Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plant J ; 99(6): 1047-1065, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31063672

RESUMEN

Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3-fold) and roots (up to 12-fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1-fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6 -enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.


Asunto(s)
Arabidopsis/genética , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Vitamina B 6/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Liasas de Carbono-Nitrógeno/genética , Liasas de Carbono-Nitrógeno/metabolismo , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/fisiología , Semillas/metabolismo , Transgenes , Vitamina B 6/metabolismo , Xanthomonas/patogenicidad
2.
Environ Toxicol ; 34(3): 303-311, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30576070

RESUMEN

Bergapten is a natural compound and has potent anticancer activities. In this study, we explored the cytotoxicity of bergapten on colorectal cancer (CRC) cell DLD-1 and LoVo and its underlying mechanisms. We observed that bergapten (30 and 50 µM) decreased the viability of the CRC cells and induced the G0/G1 and sub-G1 phase arrest. Furthermore, immunoblotting results indicated that bergapten increased p53, phospho-p53(Ser-46), p21, PUMA, Bax, PTEN, and the caspase-9 and caspase-3 cleavage, but decreased cyclin E, CDK2, and phosphor-AKT(Ser-473) in the CRC cells. Inhibition of p53 by pifithrin-α reversed the bergapten-induced p53-mediated apoptotic cascade and restored the survival signaling and cell viability. Collectively, our findings reveal that bergapten decrease the cell viability and induce cell cycle arrest in the CRC cells, which may be attributed to p53-mediated apoptotic cascade, upregulation of p21 and PTEN, and inhibition of AKT.


Asunto(s)
5-Metoxipsoraleno/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/fisiopatología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
4.
Front Plant Sci ; 4: 143, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23734155

RESUMEN

Vitamin B6 has an essential role in cells as a cofactor for several metabolic enzymes. It has also been shown to function as a potent antioxidant molecule. The recent elucidation of the vitamin B6 biosynthesis pathways in plants provides opportunities for characterizing their importance during developmental processes and exposure to stress. Humans and animals must acquire vitamin B6 with their diet, with plants being a major source, because they cannot biosynthesize it de novo. However, the abundance of the vitamin in the edible portions of the most commonly consumed plants is not sufficient to meet daily requirements. Genetic engineering has proven successful in increasing the vitamin B6 content in the model plant Arabidopsis. The added benefits associated with the enhanced vitamin B6 content, such as higher biomass and resistance to abiotic stress, suggest that increasing this essential micronutrient could be a valuable option to improve the nutritional quality and stress tolerance of crop plants. This review summarizes current achievements in vitamin B6 biofortification and considers strategies for increasing vitamin B6 levels in crop plants for human health and nutrition.

5.
Plant Mol Biol ; 79(4-5): 509-19, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22644441

RESUMEN

Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization, which can enrich the complexity of transcriptomes and proteomes. In this study, the first exonization event was detected when the modified rice EPSPS marker gene was inserted with the Ac transposon 5' end, which provided a splice donor site to yield abundant novel transcripts. To assess the contribution of splice donor and acceptor sites of transposon sequences, we inserted a Ds element into each intron of the EPSPS marker gene. This process yielded 14 constructs, with the Ds transposon inserted in the forward and reverse direction in each of the 7 introns of the EPSPS marker gene. The constructs were transformed into tobacco plants, and novel transcripts were identified by RT-PCR with specific primers. Exonization of Ds in EPSPS was biased towards providing splice donor sites of the inserted Ds sequence. Additionally, when the Ds inserted in reverse direction, a continuous splice donor consensus region was determined by offering 4 donor sites in the same intron. Information on these exonization events may help enhance gene divergence and functional genomic studies.


Asunto(s)
Elementos Transponibles de ADN/genética , Nicotiana/genética , Empalme Alternativo , Secuencia de Bases , Secuencia de Consenso , ADN de Plantas/genética , Exones , Intrones , Datos de Secuencia Molecular , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...