Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Med Genomics ; 17(1): 61, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395835

RESUMEN

BACKGROUND: IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis, which is a significant cause of renal failure. At present, the classification of IgAN is often limited to pathology, and its molecular mechanism has not been established. Therefore we aim to identify subtypes of IgAN at the molecular level and explore the heterogeneity of subtypes in terms of immune cell infiltration, functional level. METHODS: Two microarray datasets (GSE116626 and GSE115857) were downloaded from GEO. Differential expression genes (DEGs) for IgAN were screened with limma. Three unsupervised clustering algorithms (hclust, PAM, and ConsensusClusterPlus) were combined to develop a single-sample subtype random forest classifier (SSRC). Functional subtypes of IgAN were defined based on functional analysis and current IgAN findings. Then the correlation between IgAN subtypes and clinical features such as eGFR and proteinuria was evaluated by using Pearson method. Subsequently, subtype heterogeneity was verified by subtype-specific modules identification based on weighted gene co-expression network analysis(WGCNA) and immune cell infiltration analysis based on CIBERSORT algorithm. RESULTS: We identified 102 DEGs as marker genes for IgAN and three functional subtypes namely: viral-hormonal, bacterial-immune and mixed type. We screened seventeen genes specific to viral hormonal type (ATF3, JUN and FOS etc.), and seven genes specific to bacterial immune type (LIF, C19orf51 and SLPI etc.). The subtype-specific genes showed significantly high correlation with proteinuria and eGFR. The WGCNA modules were in keeping with functions of the IgAN subtypes where the MEcyan module was specific to the viral-hormonal type and the MElightgreen module was specific to the bacterial-immune type. The results of immune cell infiltration revealed subtype-specific cell heterogeneity which included significant differences in T follicular helper cells, resting NK cells between viral-hormone type and control group; significant differences in eosinophils, monocytes, macrophages, mast cells and other cells between bacterial-immune type and control. CONCLUSION: In this study, we identified three functional subtypes of IgAN for the first time and specific expressed genes for each subtype. Then we constructed a subtype classifier and classify IgAN patients into specific subtypes, which may be benefit for the precise treatment of IgAN patients in future.


Asunto(s)
Glomerulonefritis por IGA , Humanos , Glomerulonefritis por IGA/genética , Algoritmos , Análisis por Conglomerados , Aprendizaje Automático , Proteinuria
2.
Genomics ; 114(4): 110435, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35878812

RESUMEN

Systemic lupus erythematosus (SLE) is a complex disease involving many interactions at the molecular level, the details of which remain unclear. Here, we demonstrated an analytical paradigm of prioritizing genes and regulatory elements based on GWAS loci at the single-cell levels. Our initial step was to apply TWMR to identify causal genes and causal methylation sites in SLE. Based on the eQTL, LD and mQTL, we calculated the correlation between these genes and methylation sites. Next, we separately used gene expression and DNAm as exposure variables and outcome variables to analyze the regulatory mechanisms. We identified two mediating modes for SLE: 1) transcription mediation model and 2) epigenetic mediation model. Further, using single-cell RNA sequencing data, we revealed the cell subclusters associated with these mechanisms. Our identification of the mechanisms of SLE in different cell populations is of great significance for understanding the heterogeneity of disease in different cell populations.


Asunto(s)
Lupus Eritematoso Sistémico , Humanos , Lupus Eritematoso Sistémico/genética , Secuencias Reguladoras de Ácidos Nucleicos
3.
Front Genet ; 12: 758041, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858474

RESUMEN

Autoimmune diseases (ADs) are a broad range of diseases in which the immune response to self-antigens causes damage or disorder of tissues, and the genetic susceptibility is regarded as the key etiology of ADs. Accumulating evidence has suggested that there are certain commonalities among different ADs. However, the theoretical research about similarity between ADs is still limited. In this work, we first computed the genetic similarity between 26 ADs based on three measurements: network similarity (NetSim), functional similarity (FunSim), and semantic similarity (SemSim), and systematically identified three significant pairs of similar ADs: rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), myasthenia gravis (MG) and autoimmune thyroiditis (AIT), and autoimmune polyendocrinopathies (AP) and uveomeningoencephalitic syndrome (Vogt-Koyanagi-Harada syndrome, VKH). Then we investigated the gene ontology terms and pathways enriched by the three significant AD pairs through functional analysis. By the cluster analysis on the similarity matrix of 26 ADs, we embedded the three significant AD pairs in three different disease clusters respectively, and the ADs of each disease cluster might have high genetic similarity. We also detected the risk genes in common among the ADs which belonged to the same disease cluster. Overall, our findings will provide significant insight in the commonalities of different ADs in genetics, and contribute to the discovery of novel biomarkers and the development of new therapeutic methods for ADs.

4.
Mediators Inflamm ; 2021: 6660164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305454

RESUMEN

PURPOSE: Systemic lupus erythematosus (SLE) is a systemic and multifactorial autoimmune disease, and its diverse clinical manifestations affect molecular diagnosis and drug benefits. Our study was aimed at defining the SLE subtypes based on blood transcriptome data, analyzing functional patterns, and elucidating drug benefits. METHODS: Three data sets were used in this paper that were collected from the Gene Expression Omnibus (GEO) database, which contained two published data sets of pediatric and adult SLE patients (GSE65391, GSE49454) and public longitudinal data (GSE72754) from a cohort of SLE patients treated with IFN-α Kinoid (IFN-K). Based on disease activity scores and gene expression data, we defined a global SLE signature and merged three clustering algorithms to develop a single-sample subtype classifier (SSC). Systematic analysis of coexpression networks based on modules revealed the molecular mechanism for each subtype. RESULTS: We identified 92 genes as a signature of the SLE subtypes and three intrinsic subsets ("IFN-high," "NE-high," and "mixed"), which varied in disease severity. We speculated that IFN-high might be due to the overproduction of interferons (IFNs) caused by viral infection, leading to the formation of autoantibodies. NE-high might primarily result from bacterial and fungal infections that stimulated neutrophils (NE) to produce neutrophil extracellular traps (NETs) and induced individual autoimmune responses. The mixed type contained both of these molecular mechanisms and showed an intrinsic connection. CONCLUSIONS: Our research results indicated that identifying the molecular mechanism associated with different SLE subtypes would benefit the molecular diagnosis and stratified therapy. Moreover, repositioning of IFN-K based on subtypes also revealed an improved therapeutic effect, providing a new direction for disease treatment and drug development.


Asunto(s)
Trampas Extracelulares , Lupus Eritematoso Sistémico , Adulto , Niño , Genómica , Humanos , Interferón-alfa/metabolismo , Interferón-alfa/uso terapéutico , Neutrófilos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA