Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
PLoS One ; 19(5): e0299522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696452

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide and no pharmacological treatment is available that can achieve complete remission of HCC. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a recently identified HCC tumor suppressor gene which plays an important role in the development of HCC and its inactivation and reactivation has been shown to result in respectively HCC tumorigenesis and suppression. Small activating RNAs (saRNAs) have been used to achieve targeted activation of therapeutic genes for the restoration of their encoded protein through the RNAa mechanism. Here we designed and validated saRNAs that could activate LHPP expression at both the mRNA and protein levels in HCC cells. Activation of LHPP by its saRNAs led to the suppression of HCC proliferation, migration and the inhibition of Akt phosphorylation. When combined with targeted anticancer drugs (e.g., regorafenib), LHPP saRNA exhibited synergistic effect in inhibiting in vitro HCC proliferation and in vivo antitumor growth in a xenograft HCC model. Findings from this study provides further evidence for a tumor suppressor role of LHPP and potential therapeutic value of restoring the expression of LHPP by saRNA for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Pirofosfatasa Inorgánica , Neoplasias Hepáticas , Humanos , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/genética , Proliferación Celular/efectos de los fármacos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones , Línea Celular Tumoral , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos
2.
Mol Ther Nucleic Acids ; 35(1): 102147, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38435120

RESUMEN

Antisense oligonucleotides (ASOs) were the first modality to pioneer targeted gene knockdown in the treatment of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1). RNA interference (RNAi) is another mechanism of gene silencing in which short interfering RNAs (siRNAs) effectively degrade complementary transcripts. However, delivery to extrahepatic tissues like the CNS has been a bottleneck in the clinical development of RNAi. Herein, we identify potent siRNA duplexes for the knockdown of human SOD1 in which medicinal chemistry and conjugation to an accessory oligonucleotide (ACO) enable activity in CNS tissues. Local delivery via intracerebroventricular or intrathecal injection into SOD1G93A mice delayed disease progression and extended animal survival with superior efficacy compared with an ASO resembling tofersen in sequence and chemistry. Treatment also prevented disease-related declines in motor function, including improvements in animal mobility, muscle strength, and coordination. The ACO itself does not target any specific complementary nucleic acid sequence; rather, it imparts benefits conducive to bioavailability and delivery through its chemistry. The complete conjugate (i.e., siRNA-ACO) represents a novel modality for delivery of duplex RNA (e.g., siRNA) to the CNS that is currently being tested in the clinic for treatment of ALS.

3.
Sci Rep ; 14(1): 6880, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519531

RESUMEN

The radiator with heat transfer capability is able to guarantee the stable operation of hydro generator set, while the long-term and continuous scouring on radiator pipes by cooling medium will lead to thinning or even perforation of pipe wall, which triggers wall failure. This paper analyzes and predicts the failure mechanism of radiator's pipe wall, and investigates the effects of water flow velocity, sand content and sand particle size on erosion damage of radiator pipe by establishing a test bench for pipe erosion. The results show that the increase of above parameters will lead to the increasing erosion rate, especially when the sand content is 1%, the velocity is 8 m/s and the sand particle size is 0.85 mm, the erosion damage will be particularly serious. Based on experimental data, BP and LSSVM models are employed to predict the pipe wall failure, and PSO algorithm is used to optimize the two models. The optimized PSO-BP has the highest accuracy with the mean absolute error (MAE) of 0.2070 and the mean absolute percentage error (MAPE) of 4.702%. The findings provide a reference for wall failure analysis of radiator, which is of great significance for unit's safe operation.

4.
Plant Physiol Biochem ; 207: 108401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301327

RESUMEN

The exogenous application of amino acids (AAs) generally alleviates cadmium (Cd) toxicity in plants by altering their subcellular distribution. However, the physiological mechanisms underlying AA-mediated cell wall (CW) sequestration of Cd in Chinese cabbage remain unclear. Using two genotypes of Chinses cabbage, Jingcui 60 (Cd-tolerant) and 16-7 (Cd-sensitive), we characterized the root structure, subcellular distribution of Cd, CW component, and related gene expression under the Cd stress. Cysteine (Cys) supplementation led to a reduction in the Cd concentration in the shoots of Jingcui 60 and 16-7 by 65.09 % and 64.03 %, respectively. Addition of Cys alleviated leaf chlorosis in both cultivars by increasing Cd chelation in the root CW and reducing its distribution in the cytoplasm and organelles. We further demonstrated that Cys supplementation mediated the downregulation of PMEI1 expression and improving the activity of pectin methyl-esterase (PME) by 17.98 % and 25.52 % in both cultivars, respectively, compared to the Cd treatment, resulting in an approximate 12.00 %-14.70 % increase in Cd retention in pectin. In contrast, threonine (Thr) application did not significantly alter Cd distribution in the shoots of either cultivar. Taken together, our results suggest that Cys application reduces Cd root-to-shoot translocation by increasing Cd sequestration in the root CW through the downregulation of pectin methyl-esterification.


Asunto(s)
Brassica , Contaminantes del Suelo , Pectinas/metabolismo , Cadmio/metabolismo , Aminoácidos/metabolismo , Esterificación , Brassica/genética , Brassica/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
5.
Environ Sci Pollut Res Int ; 31(15): 22576-22587, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38411912

RESUMEN

Corn steep liquor-assisted microbial remediation has been proposed as a promising strategy to remediate cadmium (Cd)-contaminated soil. In this study, we determined Bacillus subtilis (K2) with a high cadmium (Cd) accumulation ability and Cd resistance. However, studies on this strategy used in the Cd uptake of Chinese cabbage are lacking, and the effect of the combined incorporation of corn steep liquor and K2 on the functions and microbial interactions of soil microbiomes is unclear. Here, we study the Cd uptake and transportation in Chinese cabbage by the combination of K2 and corn steep liquor (K2 + C7) in a Cd-contaminated soil and corresponding microbial regulation mechanisms. Results showed that compared to inoculant K2 treatment alone, a reduction of Cd concentration in the shoots by 14.4% and the dry weight biomass of the shoots and the roots in Chinese cabbage increased by 21.6% and 30.8%, respectively, under K2 + C7 treatment. Meanwhile, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were decreased by enhancing POD and SOD activity, thereby reversing Cd-induced oxidative damage. Importantly, inoculation of K2 would decrease the diversity of the microbial community while enhancing the abundance of dominant species. These findings provide a promising strategy for reducing the Cd accumulation in Chinese cabbage and recovering soil ecological functions.


Asunto(s)
Brassica , Microbiota , Contaminantes del Suelo , Cadmio/análisis , Zea mays/metabolismo , Peróxido de Hidrógeno/metabolismo , Brassica/metabolismo , Suelo , Contaminantes del Suelo/análisis
6.
Environ Sci Pollut Res Int ; 31(3): 4721-4732, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38105331

RESUMEN

Finding practical solutions for utilizing agricultural organic wastes has always been a challenge. To address this, our study investigated the effects and mechanisms of different exogenous organic waste fermentation solutions on alleviating Cd stress in plants using hydroponic experiments. Out of the seven fermentation solutions examined, pea fermentation liquid (T3), chicken manure (T5), molasses (T6), and chitosan oligosaccharide broth (T9) exhibited positive effects. They increased shoot fresh weight by 1.17%, 26.83%, 7.94%, and 15.59%, and root fresh weight by 50.00%, 12.21%, 81.19%, and 19.47%, respectively. Conversely, amino acid mother liquid (T7) and potassium polyaspartate liquid (T8) reduced shoot fresh weight by 34.21% and 24.74%, and root fresh weight by 27.06% and 7.10%, respectively. All organic waste liquids reduced Cd concentration in shoots and roots. Corn fermentation liquid (T4) reduced Cd in shoots from 87.91 to 19.20 mg/kg, while molasses (T6) reduced Cd in roots from 980.94 to 260.47 mg/kg. SEM-EDX results revealed that molasses (T6) effectively repaired Cd damage on root surfaces. In addition, several waste liquids mitigated microelement absorption disturbances. All waste liquids reduced MDA, corn fermentation liquid (T4), chicken manure (T5), molasses (T6), potassium polyaspartate liquid (T8), and chitosan oligosaccharide liquid (T9) significantly decreased H2O2 by 21.6-38.3%. Structural equation model (SEM) and correlation analysis highlighted the importance of root Mg, Cu, and Zn content and CAT activity in relieving Cd stress and promoting plant growth. Overall, molasses (T6) and chicken manure (T5) demonstrated the most beneficial combined effects, while amino acid mother liquid (T7) and chitosan oligosaccharide liquid (T9) should be exercised with caution due to their weaker effects.


Asunto(s)
Quitosano , Contaminantes del Suelo , Cadmio/análisis , Peróxido de Hidrógeno/metabolismo , Quitosano/metabolismo , Fermentación , Estiércol , Potasio/metabolismo , Aminoácidos/metabolismo , Oligosacáridos , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
7.
PLoS One ; 18(2): e0282063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36821623

RESUMEN

PURPOSE: Proliferative vitreoretinopathy (PVR) is a disease process resulting from proliferation of retinal pigment epithelial (RPE) cells in the vitreous and periretinal area, leading to periretinal membrane formation and traction and eventually to postoperative failure after vitreo-retinal surgery for primary rhegmatogenous retinal detachment (RRD). The present study was designed to test the therapeutic potential of a p21CIP/WAF1 (p21) inducing saRNA for PVR. METHODS: A chemically modified p21 saRNA (RAG1-40-53) was tested in cultured human RPE cells for p21 induction and for the inhibition of cell proliferation, migration and cell cycle progression. RAG1-40-53 was further conjugated to a cholesterol moiety and tested for pharmacokinetics and pharmacodynamics in rabbit eyes and for therapeutic effects after intravitreal administration in a rabbit PVR model established by injecting human RPE cells. RESULTS: RAG1-40-53 (0.3 mg, 1 mg) significantly induced p21 expression in RPE cells and inhibited cell proliferation, the progression of cell cycle at the G0/G1 phase and TGF-ß1 induced migration. After a single intravitreal injection into rabbit eyes, cholesterol-conjugated RAG1-40-53 exhibited sustained concentration in the vitreal humor beyond at least 8 days and prevented the progression of established PVR. CONCLUSION: p21 saRNA could represent a novel therapeutics for PVR by exerting a antiproliferation and antimigration effect on RPE cells.


Asunto(s)
Vitreorretinopatía Proliferativa , Animales , Conejos , Humanos , Vitreorretinopatía Proliferativa/tratamiento farmacológico , Vitreorretinopatía Proliferativa/metabolismo , Células Cultivadas , Ojo/metabolismo , División Celular , Proteínas de Homeodominio/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
8.
Toxics ; 10(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893841

RESUMEN

Heavy metal (HM) contamination of soils is a worldwide problem with adverse consequences to the environment and human health. For the safe production of vegetables in contaminated soil, efficient soil amendments need to be applied such as nano-hydroxyapatite (n-HAP) and poly γ-glutamic acid (γ-PGA), which can mitigate heavy metal uptake and enhance crop yield. However, the combined effects of soil amendments and indigenous microorganisms (IMOs) on HMs immobilisation and accumulation by crops have received little attention. We established a pot experiment to investigate the effects of IMOs combined with n-HAP and γ-PGA on coriander (Coriandrum sativum L.) growth and its Cd and Pb uptake in two acidic soils contaminated with HMs. The study demonstrated that applying n-HAP, with and without IMOs, significantly increased shoot dry biomass and reduced plant Cd and Pb uptake and diethylenetriaminepentaacetic acid (DTPA) extractable Cd and Pb concentrations in most cases. However, γ-PGA, with and without IMOs, only reduced soil DTPA-extractable Pb concentrations in slightly contaminated soil with 0.29 mg/kg Cd and 50.9 mg/kg Pb. Regardless of amendments, IMOs independently increased shoot dry biomass and soil DTPA-extractable Cd concentrations in moderately contaminated soil with 1.08 mg/kg Cd and 100.0 mg/kg Pb. A synergistic effect was observed with a combined IMOs and n-HAP treatment, where DTPA-extractable Cd and Pb concentrations decreased in slightly contaminated soil compared with the independent IMOs and n-HAP treatments. The combined treatment of γ-PGA and IMOs substantially increased shoot dry biomass in moderately contaminated soil. These results indicate that solo n-HAP enhanced plant growth and soil Cd and Pb immobilisation, and mitigated Cd and Pb accumulation in shoots. However, the combination of n-HAP and IMOs was optimal for stabilising and reducing HMs' uptake and promoting plant growth in contaminated soil, suggesting its potential for safe crop production.

9.
Sci Total Environ ; 845: 157384, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35843318

RESUMEN

As a common biological engineering technology, anaerobic digestion can stabilize sewage sludge and convert the carbon compounds into renewable energy (i.e., methane). However, anaerobic digestion of sewage sludge is severely affected by antibiotics. This review summarizes the effects of different antibiotics on anaerobic digestion of sewage sludge, including production of methane and volatile fatty acids (VFAs), and discusses the impact of antibiotics on biotransformation processes (solubilization, hydrolysis, acidification, acetogenesis and methanogenesis). Moreover, the effects of different antibiotics on microbial community structure (bacteria and archaea) were determined. Most of the research results showed that antibiotics at environmentally relevant concentrations can reduce biogas production mainly by inhibiting methanogenic processes, that is, methanogenic archaea activity, while a few antibiotics can improve biogas production. Moreover, the combination of multiple environmental concentrations of antibiotics inhibited the efficiency of methane production from sludge anaerobic digestion. In addition, some lab-scale pretreatment methods (e.g., ozone, ultrasonic combined ozone, zero-valent iron, Fe3+ and magnetite) can promote the performance of anaerobic digestion of sewage sludge inhibited by antibiotics.


Asunto(s)
Microbiota , Ozono , Anaerobiosis , Antibacterianos/farmacología , Archaea/metabolismo , Biocombustibles , Reactores Biológicos , Metano/metabolismo , Aguas del Alcantarillado/microbiología
10.
Bioengineered ; 13(3): 6729-6739, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35246011

RESUMEN

The loss of inner ear hair cells leads to irreversible acoustic injury in mammals, and regeneration of inner ear hair cells to restore hearing loss is challenging. ATOH1 is a key gene in the development and regeneration of hair cells. Small activating RNAs (saRNAs) can target a gene to specifically upregulate its expression. This study aimed to explore whether small activating RNAs could induce the differentiation of human adipose-derived mesenchymal stem cells into hair cell-like cells with a combination of growth factors in vitro and thus provide a new strategy for hair cell regeneration and the treatment of sensorineural hearing loss. Fifteen small activating RNAs targeting the human ATOH1 gene were designed and screened in 293 T and human adipose-derived mesenchymal stem cells, and 3 of these candidates were found to be capable of effectively and stably activating ATOH1 gene expression. The selected small activating RNAs were then transfected into hair cell progenitor cells, and hair cell markers were examined 10 days after transfection. After transfection of the selected small activating RNAs, the expression of the characteristic markers of inner ear hair cells, POU class 4 homeobox 3 (POU4F3) and myosin VIIA (MYO7A), was detected. Human adipose-derived mesenchymal stem cells have the potential to differentiate into human hair cell progenitor cells. In vitro, small activating RNAs were able to induce the differentiation of hair cell progenitor cells into hair cell-like cells. Therefore, RNA activation technology has the potential to provide a new strategy for the regeneration of hair cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , ARN , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Cabello/metabolismo , Células Ciliadas Auditivas/metabolismo , Humanos , Mamíferos/genética , ARN/metabolismo , Regeneración/genética
11.
Hum Exp Toxicol ; 40(12_suppl): S519-S529, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34670429

RESUMEN

OBJECTIVE: Ketamine is an anesthetic that induces neurotoxicity when administered at high doses. In this work, we explored the protective effects of lipoxin A4 methyl ester (LXA4 ME) against ketamine-induced neurotoxicity and the underlying protective mechanism in pheochromocytoma (PC12) cells. METHODS: PC12 cells were treated with 50 µM of ketamine and different LXA4 ME concentrations of LXA4 ME (5-50 nM) for 24 h, and their viability, apoptosis, and oxidative status were assessed. RESULTS: Quantitative real-time polymerase chain reaction experiments showed that ketamine downregulated miR-22 expression and upregulated Bcl-2-associated athanogene 5 (BAG5) in PC12 cells in a concentration-dependent manner. LXA4 ME induced the opposite effects, thus attenuating ketamine-induced neurotoxicity. Further in vitro assays showed that miR-22 directly targeted BAG5, thus promoting cell viability by suppressing cell apoptosis and oxidative stress. Under expression miR-22 or upregulation of BAG5 antagonized the effects of LXA4 ME. CONCLUSION: LXA4 ME can protect PC12 cells from ketamine-induced neurotoxicity by activating the miR-22/BAG5 signaling pathway. Thus, LXA4 ME can be used as a protective drug against ketamine-induced neural damage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ketamina/toxicidad , Lipoxinas/farmacología , MicroARNs/metabolismo , Neuronas/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Supervivencia Celular/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Células PC12 , Ratas
12.
Sci Rep ; 11(1): 11994, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099807

RESUMEN

This study was conducted to investigate the speciation, bioavailability and environmental risk of heavy metals (HMs) in chicken manure (CM) and water-washed swine manure (WSM) and their biochars produced at different pyrolysis temperatures (200 to 800 °C). As the pyrolysis temperature increased, the remaining proportion, toxicity characteristic leaching procedure (TCLP), HCl and diethylenetriamine pentaacetic acid (DTPA) of HMs gradually declined. This result proved that the speciation of HMs in chicken manure biochars (CMB) and water-washed swine manure biochars (WSMB) was influenced by pyrolysis temperature. The proportions of stable fractions were enhanced with increased pyrolysis temperature and weakened the HM validity for vegetation at 800 °C. Finally, the results of the risk assessment showed that the environmental risk of HMs in CMB and WSMB decreased with increasing pyrolysis temperature. Therefore, pyrolysis at 800 °C can provide a practical approach to lessen the initial and underlying heavy metal toxicity of CMB and WSMB to the environment.

13.
J Biol Methods ; 8(1): e142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33604394

RESUMEN

We measured anomalous diffusion in human prostate cancer cells which were transfected with the Alexa633 fluorescent RNA probe and co-transfected with enhanced green fluorescent protein-labeled argonaute2 protein by laser scanning microscopy. The image analysis arose from diffusion based on a "two-level system". A trap was an interaction site where the diffusive motion was slowed down. Anomalous subdiffusive spreading occurred at cellular traps. The cellular traps were not immobile. We showed how the novel analysis method of imaging data resulted in new information about the number of traps in the crowded and heterogeneous environment of a single human prostate cancer cell. The imaging data were consistent with and explained by our modern ideas of anomalous diffusion of mixed origins in live cells. Our original research presented in this study is significant as we obtained a complex diffusion mechanism in live single cells.

14.
J Environ Manage ; 284: 112056, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548754

RESUMEN

Brassica napus L. (oilseed rape) was grown with daikon and white lupin in a polyvinyl chloride split pot experiment (with no barrier between the compartments or by a nylon mesh barrier (37 µm) to license partial root interaction, or a solid barrier to stop any root interactions) to examine the effect of rhizosphere interaction on the cadmium uptake. The results showed that shoot and root biomasses of oilseed rape were 40.66% and 26.94% less than that of the monocropped treatment (solid barrier) when intercropping with daikon under the rhizosphere complete interaction. However, the intermingling of roots between oilseed rape and white lupin notably enhanced the dry biomass of oilseed rape by 40.23% and decreased with the reduction of root contact. Oilseed rape intercropping with daikon enhanced the shoot Cd concentration of oilseed rape. The shoot Cd concentration (44.8 mg/kg) of oilseed rape when intercropped white lupin under complete rhizosphere interaction were greater than those of other treatments. Additionally, the intermingling of roots played a positive role in the content of citric and malic acids when intercropping with white lupin. In all systems, the BCF values of oilseed rape >5. Therefore, intercropping with white lupin may contribute to higher biomass and increased uptake Cd by oilseed rape. We can toward sustainable positive effects on phytoremediation that based on a better understanding of rhizosphere processes.


Asunto(s)
Brassica napus , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas/química , Rizosfera
15.
Environ Pollut ; 272: 115989, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190985

RESUMEN

In recent years, the biomass was directly used extensively in agriculture due to its low cost and convenience. Increasingly serious soil pollution of heavy metals may pose threats and risks to human health. Directly addition of biomass to soil may affect the bioavailability and content of heavy metals. Here, we reviewed the impact of direct application of oil cake, manure, sewage sludge, straw and municipal waste to soil on the form and concentration of heavy metals in soil, and also emphasized the role of biomass in soil heavy metals remediation. Heavy metals can be activated in a short term by the content of heavy metals in biomass, the production of low-molecular-weight organic acids by biomass application, and the oxidation of sulfides (except for ammoniation). However, heavy metals in soil can be immobilized by humic substances. These can be produced by biomass during a long-term application to soil. Moreover, the degree of immobilization depended on the kind of biomass. Biomass contaminated by heavy metals cannot be returned to the field directly. Therefore, Mitigating the activation of heavy metals in the early stage of biomass application is meaningful, especially for application of these biomass such as straw, sewage sludge and municipal waste. Future researches should focus on the heavy metal control on direct use of biomass in agricultural.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Agricultura , Biomasa , Humanos , Metales Pesados/análisis , Aguas del Alcantarillado , Suelo
16.
Ecotoxicol Environ Saf ; 205: 111162, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32836158

RESUMEN

The mechanisms of intercropping increasing plant biomass, cadmium accumulation, and organic acids secreted in rhizosphere soil are still unclear. Oilseed rape and intercrops were grown in boxes separated either with no barrier between the compartments or by a nylon mesh barrier (37 µm) to license partial root interaction, or a solid barrier to stop any root interactions. Two intercropping systems (oilseed rape-faba bean and oilseed rape-ryegrass) were carried out in soil with Cd content of 5 mg/kg. The intermingling of roots between oilseed rape and faba bean enhanced the biomass of oilseed rape. However, the biomass was negatively affected implying the higher nutrient apportionment to the ryegrass than oilseed rape. Oilseed rape intercropping with both faba bean and ryegrass played a positive role in the shoot Cd concentration of oilseed rape. The intermingling of roots played a positive role in the citric and malic acids when intercropping with faba bean. A remarkable increase in water-soluble Cd and DTPA-Cd content was observed during oilseed rape-faba bean complete root interaction treatment, up to 175.00% and 46.65%, respectively, which compare with the monoculture treatment. In both systems, the translocation factor values were higher for oilseed rape (O-F system) than for the other test plants and were always >1. Thus the Cd removal potential of oilseed rape can be further improved in the future by optimizing agronomic practices and intercropping with faba bean.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Cadmio/metabolismo , Producción de Cultivos/métodos , Lolium/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Vicia faba/crecimiento & desarrollo , Bioacumulación , Biomasa , Brassica napus/metabolismo , China , Lolium/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rizosfera , Suelo/química , Vicia faba/metabolismo
17.
Chemosphere ; 247: 125962, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32069728

RESUMEN

Manure treatment has become a focal issue in relation to current national policies on environmental and renewable energy matters. Heavy metals can be excreted with the animal manure, contributing to pollution of soil and water. Therefore, animal manure needs proper treatment before application to agricultural soils. Here, we review the species transformation of HMs and fate during incineration, pyrolysis, gasification and hydrothermal processing of animal manures. During thermal processes, 75%-90% of thermally stable HMs such as Cr, Ni, and Mn were concentrated in the solid-phase. HMs with less thermal stability such as Cd, As, Hg, and Pb are inclined to concentrate in the aqueous phase and gas phase, accounting for less than 5% of their total concentrations. In general, thermal processes transform HMs in the exchangeable fraction with high biotoxicity to oxidizable fraction or residual fraction with less bioavailability. In addition, the operating conditions and co-processing with other materials may influence the species transformation of HMs. Finally, recommendations for future research on the proper disposal and utilization of animal manure are proposed. More large-scale experiments are required to elucidate the precise mechanism behind the immobilization of HMs. The influence of additives (catalysts and HM stabilizers) and the influence of the type of solvent on HM transformation needs further study.


Asunto(s)
Calor , Estiércol/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Agricultura , Animales , Contaminación Ambiental
18.
RSC Adv ; 9(69): 40536-40545, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-35542644

RESUMEN

Livestock-manure-derived biochar is one of major products obtained from the pyrolysis of livestock manure. This study quantitatively assesses the pollution level and ecological risks associated with heavy metals in livestock manure and the biochar produced by its pyrolysis. The geo-accumulation index (GAI) values of heavy metals in livestock manure were significantly decreased (P < 0.05) and indicated to be at the grade of uncontaminated expected for Zn in pig-manure-derived biochar (PMB, 0.94, 800 °C) via pyrolysis. Therefore, Zn should be paid more attention in PMB. The risk factors (E r i ) result shows that heavy metals in biochars were significantly decreased (P < 0.05) with increasing pyrolysis temperature. Potential ecological risk index values revealed that the integrated risks from the heavy metals were significantly decreased (P < 0.05) after pyrolysis. Similarly, the risk assessment code values indicated that the risks from the heavy metals in livestock-manure-derived biochars were significantly decreased (P < 0.05) after pyrolysis. In summary, pyrolysis represents an effective treatment method for livestock manure and can provide an effective method to reduce the risks of environmental pollution.

19.
Int J Biochem Cell Biol ; 97: 36-42, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29425832

RESUMEN

Recent studies have reported that chemically synthesized double-stranded RNAs (dsRNAs), also known as small activating RNA (saRNAs), can specifically induce gene expression by targeting promoter sequences by a mechanism termed RNA activation (RNAa). In the present study, we designed 4 candidate saRNAs targeting the Von Hippel-Lindau (VHL) gene promoter. Among these saRNAs, dsVHL-821 significantly inhibited cell growth by up-regulating VHL at both the mRNA and protein levels in renal cell carcinoma 769-P cells. Functional analysis showed that dsVHL-821 induced apoptosis by increasing p53, decreasing Bcl-xL, activating caspase 3/7 and poly-ADP-ribose polymerase in a dose-dependent manner. Chromatin immunoprecipitation analysis revealed that dsVHL-821 increased the enrichment of Ago2 and RNA polymerase II at the dsVHL-821 target site. In addition, Ago2 depletion significantly suppressed dsVHL-821-induced up-regulation of VHL gene expression and related effects. Single transfection of dsVHL-821 caused long-lasting (14 days) VHL up-regulation. Furthermore, the activation of VHL by dsVHL-821 was accompanied by an increase in dimethylation of histone 3 at lysine 4 (H3K4me2) and acetylation of histone 4 (H4ac) and a decrease in dimethylation of histone 3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) in the dsVHL-821 target region. Taken together, these results demonstrate that dsVHL-821, a novel saRNA for VHL, induces the expression of the VHL gene by epigenetic changes, leading to inhibition of cell growth and induction of apoptosis, and suggest that targeted activation of VHL by dsVHL-821 may be explored as a novel treatment of renal cell carcinoma.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Renales/metabolismo , ARN Bicatenario/farmacología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/biosíntesis , Apoptosis/efectos de los fármacos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
20.
Adv Exp Med Biol ; 983: 1-20, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28639188

RESUMEN

Small RNA partnering with Argonaute (Ago) proteins plays important roles in diverse biological processes mainly by suppressing the expression of cognate target sequences. Mounting evidence reveals that the small RNA-Ago pathway can also positively regulate gene expression, a phenomenon termed as RNA activation (RNAa), which is evolutionarily conserved from Caenorhabditis elegans to human. In this chapter, I provide a general overview of mammalian RNAa phenomena and their basic characteristics and discuss recent advances toward understanding the nature of the molecular machinery responsible for RNAa and the development of RNAa-based research tools and therapeutics.


Asunto(s)
Proteínas Argonautas/genética , ARN Pequeño no Traducido/genética , Activación Transcripcional , Animales , Humanos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA