Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3441-3451, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041116

RESUMEN

Type 2 diabetes(T2DM) is a metabolic disorder marked by glucose toxicity, lipotoxicity, insulin resistance, and other pathological manifestations, representing a pressing global health concern. Obesity stands out as a pivotal risk factor for T2DM development. When combined with T2DM, obesity exacerbates insulin resistance and metabolic abnormalities. The disturbance in the inflammatory microenvironmental balance between adipose and pancreatic islet tissue emerges as a significant contributor to obese with T2DM development. Macrophages play a crucial role in maintaining immune homeostasis and responding to inflammation in adipose and pancreatic islet tissue. Individuals with obese with T2DM exhibit an imbalanced M1/M2 macrophage polarization, contributing to the progression of glycolipid metabolism abnormalities. Hence, restoring the equilibrium of macrophage polarization becomes imperative for obese with T2DM treatment. Scientific researchers have demonstrated that traditional Chinese medicine(TCM) therapies can effectively modulate macrophage polarization, offering a viable approach for treating obese with T2DM. In light of the existing evidence, this study systematically reviewed the research progress of TCM targeting the balance of M1/M2 macrophage polarization to ameliorate obese with T2DM, so as to furnish evidence supporting the clinical diagnosis and treatment of obese with T2DM with TCM while also contributing to the exploration of the biological basis of obese with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Macrófagos , Obesidad , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/complicaciones , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Animales , Medicina Tradicional China
2.
Front Genet ; 15: 1356696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050247

RESUMEN

Background: Metabolic dysregulation represents a defining characteristic of Type 2 diabetes (T2DM). Nevertheless, there remains an absence of substantial evidence establishing a direct causal link between circulating blood metabolites and the promotion or prevention of T2DM. In addressing this gap, we employed Mendelian randomization (MR) analysis to investigate the potential causal association between 1,091 blood metabolites, 309 metabolite ratios, and the occurrence of T2DM. Methods: Data encompassing single-nucleotide polymorphisms (SNPs) for 1,091 blood metabolites and 309 metabolite ratios were extracted from a Canadian Genome-wide association study (GWAS) involving 8,299 participants. To evaluate the causal link between these metabolites and Type 2 diabetes (T2DM), multiple methods including Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Weighted Mode, and Simple Mode were employed. p-values underwent correction utilizing False Discovery Rates (FDR). Sensitivity analyses incorporated Cochran's Q test, MR-Egger intercept test, MR-PRESSO, Steiger test, leave-one-out analysis, and single SNP analysis. The causal effects were visualized via Circos plot, forest plot, and scatter plot. Furthermore, for noteworthy, an independent T2DM GWAS dataset (GCST006867) was utilized for replication analysis. Metabolic pathway analysis of closely correlated metabolites was conducted using MetaboAnalyst 5.0. Results: The IVW analysis method utilized in this study revealed 88 blood metabolites and 37 metabolite ratios demonstrating a significant causal relationship with T2DM (p < 0.05). Notably, strong causal associations with T2DM were observed for specific metabolites: 1-linoleoyl-GPE (18:2) (IVW: OR:0.930, 95% CI: 0.899-0.962, p = 2.16 × 10-5), 1,2-dilinoleoyl-GPE (18:2/18:2) (IVW: OR:0.942, 95% CI: 0.917-0.968, p = 1.64 × 10-5), Mannose (IVW: OR:1.133, 95% CI: 1.072-1.197, p = 1.02 × 10-5), X-21829 (IVW: OR:1.036, 95% CI: 1.036-1.122, p = 9.44 × 10-5), and Phosphate to mannose ratio (IVW: OR:0.870, 95% CI: 0.818-0.926, p = 1.29 × 10-5, FDR = 0.008). Additionally, metabolic pathway analysis highlighted six significant pathways associated with T2DM development: Valine, leucine and isoleucine biosynthesis, Phenylalanine metabolism, Glycerophospholipid metabolism, Alpha-Linolenic acid metabolism, Sphingolipid metabolism, and Alanine, aspartate, and glutamate metabolism. Conclusion: This study identifies both protective and risk-associated metabolites that play a causal role in the development of T2DM. By integrating genomics and metabolomics, it presents novel insights into the pathogenesis of T2DM. These findings hold potential implications for early screening, preventive measures, and treatment strategies for T2DM.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39069464

RESUMEN

BACKGROUND AND AIM: Our aim was to explore the potential relationship between SII and obesity, as well as abdominal obesity. METHODS AND RESULTS: We utilized a weighted multivariable logistic regression model to investigate the relationship between SII and obesity, as well as abdominal obesity. Generalized additive models were employed to test for non-linear associations. Subsequently, we constructed a two-piecewise linear regression model and conducted a recursive algorithm to calculate inflection points. Additionally, subgroup analyses and interaction tests were performed. A total of 7,880 U.S. adult participants from NHANES 2011-2018 were recruited for this study. In the regression model adjusted for all confounding variables, the odds ratios (95% confidence intervals) for the association between SII/100 and obesity, as well as abdominal obesity, were 1.03 (1.01, 1.06) and 1.04 (1.01, 1.08) respectively. There was a non-linear and reverse U-shaped association between SII/100 and obesity, as well as abdominal obesity, with inflection points at 7.32 and 9.98 respectively. Significant positive correlations were observed before the inflection points, while significant negative correlations were found after the inflection points. There was a statistically significant interaction in the analysis of age, hypertension, and diabetes. Moreover, a notable interaction is observed between SII/100 and abdominal obesity within non-Hispanic Asian populations. CONCLUSIONS: In adults from the United States, there is a positive correlation between SII and the high risk of obesity, as well as abdominal obesity. Further large-scale prospective studies are needed to analyze the role of SII in obesity and abdominal obesity.

4.
J Agric Food Chem ; 72(30): 16848-16859, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024463

RESUMEN

(R)-3-Hydroxybutyric acid (R-3HB) is an important chiral chemical with extensive applications in the agricultural, food, and chemical industries. The synthesis of R-3HB by microbial fermentation is of interest due to its remarkable stereoselectivity and economy. However, the low production of R-3HB failed to meet the needs of large-scale industrial production. In this study, an engineered strain for the efficient biosynthesis of R-3HB was constructed through a three-pronged approach encompassing biosynthetic pathway optimization, engineering of NADPH regenerators, and central metabolism regulation. The engineered strain Q5081 produced 75.7 g/L R-3HB, with a productivity of 1.26 g/L/h and a yield of 0.34 g/g glucose in fed-batch fermentation, showing the highest reported titer and productivity of R-3HB to date. We also performed transcriptome sequencing and annotation to illustrate the mechanism underlying the enhanced R-3HB production. The systematic metabolic engineering by a three-pronged approach demonstrated the feasibility of improving the biosynthesis, and the engineered strain Q5081 has the potential for widespread applications in the industrial production of R-3HB.


Asunto(s)
Ácido 3-Hidroxibutírico , Escherichia coli , Fermentación , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/biosíntesis , Ácido 3-Hidroxibutírico/química , Vías Biosintéticas
5.
J Affect Disord ; 363: 373-380, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029685

RESUMEN

OBJECTIVES: The aim of our study was to assess the association between muscle mass and strength and depression through a cross-sectional study of the National Health and Nutrition Examination Survey from 2011 to 2014. METHODS: Muscle mass was calculated by summing the lean body mass of the limbs and muscle strength was assessed by grip strength. Depression was determined by The 9-item Patient Health Questionnaire. We used weighted multivariate logistic regression models to explore the relationship between muscle mass and strength and depression. Generalized additive models were used to test for the presence of nonlinear associations. We then constructed a two-piece-wise linear regression model and performed a recursive algorithm to calculate inflection points. In addition, subgroup analyses and interaction tests were performed. RESULTS: The study recruited 4871 adults from the United States. In regression models adjusted for all confounding variables, the OR (95 % CI) for the association between grip strength and appendicular lean mass (ALM) and depression were 0.943 (0.903, 0.985), 0.945 (0.908, 0.983), respectively. There was a non-linear association between grip strength and depression with a turning point of 46.3. The OR (95 % CI) before the turning point was 0.920 (0.872, 0.972). The interaction was statistically significant only in the age analysis. There was also a nonlinear association between ALM and depression, but no significant turning point was found. The interaction was statistically significant in the gender and BMI analyses. CONCLUSION: Grip strength and ALM are negatively associated with an increased likelihood of depression in US adults. Exercises for muscle mass and strength may help prevent depression.

6.
Int Immunopharmacol ; 139: 112799, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39068755

RESUMEN

Antituberculosis drugs induce pharmacologic cholestatic liver injury with long-term administration. Liver injury resulting from rifampicin is potentially related to the bile acid nuclear receptor Farnesoid X Receptor (FXR). To investigate this, cholestasis was induced in both wild-type (C57BL/6N) mice and FXR knockout (FXR-null) mice through administration of rifampicin (200 mg/kg) via gavage for 7 consecutive days. Compared with C57BL/6N mice, FXR-null mice exhibited more severe liver injury after rifampicin administration, characterized by enlarged liver size, elevated transaminases, and increased inflammation. Moreover, under rifampicin treatment, FXR knockout impairs lipid secretion and exacerbates hepatic steatosis. Significantly, the expression of metabolism molecules BSEP increased, while NTCP and CYP7A1 decreased following rifampicin administration in C57BL/6N mice, whereas these changes were absent in FXR knockout mice. Furthermore, rifampicin treatment in both C57BL/6N and FXR-null mice was associated with elevated c-Jun N-terminal kinase phosphorylation (p-JNK) levels, with a more pronounced elevation in FXR-null mice. Our study suggests that rifampicin-induced liver injury, steatosis, and cholestasis are associated with FXR dysfunction and altered bile acid metabolism, and that the JNK signaling pathway is partially implicated in this injury. Based on these results, we propose that FXR might be a novel therapeutic target for addressing drug-induced liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares , Rifampin , Animales , Rifampin/efectos adversos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hígado/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Simportadores/genética , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Colestasis/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
7.
Lipids Health Dis ; 23(1): 145, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760656

RESUMEN

BACKGROUND: Despite abundant evidence on the epidemiological risk factors of metabolic diseases related to hyperuricemia, there is still insufficient evidence regarding the nonlinear relationship between triglyceride-glucose (TyG) index and hyperuricemia. Thus, the purpose of this research is to clarify the nonlinear connection between TyG and hyperuricemia. METHODS: From 2011 to 2018, a cross-sectional study was carried out using data from the National Health and Nutrition Examination Survey (NHANES). This study had 8572 participants in all. TyG was computed as Ln [triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. The outcome variable was hyperuricemia. The association between TyG and hyperuricemia was examined using weighted multiple logistic regression, subgroup analysis, generalized additive models, smooth fitting curves, and two-piecewise linear regression models. RESULTS: In the regression model adjusting for all confounding variables, the OR (95% CI) for the association between TyG and hyperuricemia was 2.34 (1.70, 3.21). There is a nonlinear and reverse U-shaped association between TyG and hyperuricemia, with a inflection point of 9.69. The OR (95% CI) before the inflection point was 2.64 (2.12, 3.28), and after the inflection point was 0.32 (0.11, 0.98). The interaction in gender, BMI, hypertension, and diabetes analysis was statistically significant. CONCLUSION: Additional prospective studies are required to corroborate the current findings, which indicate a strong positive connection between TyG and hyperuricemia among adults in the United States.


Asunto(s)
Glucemia , Hiperuricemia , Triglicéridos , Humanos , Hiperuricemia/sangre , Hiperuricemia/epidemiología , Triglicéridos/sangre , Masculino , Estudios Transversales , Femenino , Persona de Mediana Edad , Adulto , Glucemia/metabolismo , Glucemia/análisis , Encuestas Nutricionales , Estados Unidos/epidemiología , Factores de Riesgo , Anciano , Modelos Logísticos
8.
PLoS One ; 19(4): e0301327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626143

RESUMEN

BACKGROUND: There is a correlation between obesity and 25-hydroxyvitamin D (25OHD) that tends to be negative. However, this relationship varies among different races. In this study, Asian adults with and without obesity were compared in terms of their levels of 25OHD. METHODS: We carried out a cross-sectional analysis on 2664 non-Hispanic Asian adults who participated in the National Health and Nutrition Examination Survey (NHANES) conducted between 2011 and 2018. To examine the connection between obese status, body mass index (BMI), waist circumference (WC) and weight, and 25OHD, we ran multivariate linear regression models and multivariate logistic regression models. RESULTS: After adjusting for all confounding factors, obesity status shows a significant positive correlation with vitamin D deficiency (model 3: OR = 2.318, 95% CI:1.317, 4.082). This positive correlation remains significant in males (males: OR = 2.713, 95% CI: -13.398, 5.217). In all three models, a negative association was observed between obesity status and 25OHD (model 1: ß = -4.535, 95% CI: -6.987, -2.083; model 2 ß = -4.249, 95% CI: -6.549, -2.039; model 3 ß = -1.734, 95% CI: -7.285, 3.816). After controlling for covariates, there was a significant negative correlation between WC and 25OHD when stratified by gender and obesity status in both males with and without obesity (males with obesity: ß = -1.461, 95% CI: -2.485, -0.436; males without obesity: ß = -0.855. 95% CI: -1.499, -0.210). In males with obesity, there was a very strong positive connection between body weight and 25OHD (ß = 0.912, 95% CI: 0.227, 1.597). In addition, neither gender's obese individuals showed a significant link between BMI and 25OHD. CONCLUSION: This study demonstrated a positive correlation between obesity and vitamin D deficiency and a negative correlation between obesity and 25OHD in Asian American adults. Additionally, among male obese individuals, there was a significant negative correlation between WC and 25OHD, an observation that needs to be validated in further prospective studies.


Asunto(s)
Asiático , Obesidad , Deficiencia de Vitamina D , Vitamina D , Adulto , Humanos , Masculino , Índice de Masa Corporal , Calcifediol , Estudios Transversales , Encuestas Nutricionales , Obesidad/epidemiología , Estudios Prospectivos , Vitamina D/análogos & derivados , Vitamina D/sangre , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/epidemiología , Estados Unidos , Femenino
9.
J Exp Bot ; 75(10): 2933-2950, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441949

RESUMEN

Iron is an essential micronutrient for plant growth and development. In Arabidopsis thaliana, an intricate regulatory network involving several basic helix-loop-helix (bHLH) transcription factors controls the homeostasis of iron. Among these transcription factors, bHLH121 plays a crucial role. bHLH121 interacts in vivo with clade IVc bHLH transcription factors and activates the expression of FIT and clade Ib bHLH transcription factors to stimulate the uptake of iron. How bHLH121 and clade IVc bHLH transcription factors function collectively and efficiently to maintain iron homeostasis is still unclear. Herein, we found that double loss-of-function mutants involving bhlh121 and one of the clade IVc bHLH transcription factors displayed more severe iron deficiency-associated growth defects than each of the single mutants. We also found that among the four clade IVc bHLH transcription factors, only bHLH34 and bHLH105 could partially complement the iron-associated growth defects of bhlh121 when overexpressed. These data, together with protein localization analysis, support that bHLH121 and clade IVc bHLH transcription factors act synergistically to regulate iron homeostasis and that different bHLH121/clade IVc and clade IVc/clade IVc protein complexes are involved in this process.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Homeostasis , Hierro , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hierro/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Lipids Health Dis ; 23(1): 78, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475782

RESUMEN

BACKGROUND: In observational studies, there exists an association between obesity and epigenetic age as well as telomere length. However, varying and partially conflicting outcomes have notably arisen from distinct studies on this topic. In the present study, two-way Mendelian randomization was used to identify potential causal associations between obesity and epigenetic age and telomeres. METHODS: A genome-wide association study was conducted using data from individuals of European ancestry to investigate bidirectional Mendelian randomization (MR) regarding the causal relationships between obesity, as indicated by three obesity indicators (body mass index or BMI, waist circumference adjusted for BMI or WCadjBMI, and waist-to-hip ratio adjusted for BMI or WHRadjBMI), and four epigenetic age measures (HannumAge, HorvathAge, GrimAge, PhenoAge), as well as telomere length. To assess these causal associations, various statistical methods were employed, including Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Weighted Mode, and Simple Mode. To address the issue of multiple testing, we applied the Bonferroni correction. These methods were used to determine whether there is a causal link between obesity and epigenetic age, as well as telomere length, and to explore potential bidirectional relationships. Forest plots and scatter plots were generated to show causal associations between exposures and outcomes. For a comprehensive visualization of the results, leave-one-out sensitivity analysis plots, individual SNP-based forest plots for MR analysis, and funnel plots were included in the presentation of the results. RESULTS: A strong causal association was identified between obesity and accelerated HannumAge, GrimAge, PhenoAge and telomere length shrinkage. The causal relationship between WCadjBMI and PhenoAge acceleration (OR: 2.099, 95%CI: 1.248-3.531, p = 0.005) was the strongest among them. However, only the p-values for the causal associations of obesity with GrimAge, PhenoAge, and telomere length met the criteria after correction using the Bonferroni multiple test. In the reverse MR analysis, there were statistically significant causal associations between HorvathAge, PhenoAge and GrimAge and BMI, but these associations exhibited lower effect sizes, as indicated by their Odds Ratios (ORs). Notably, sensitivity analysis revealed the robustness of the study results. CONCLUSIONS: The present findings reveal a causal relationship between obesity and the acceleration of epigenetic aging as well as the reduction of telomere length, offering valuable insights for further scientific investigations aimed at developing strategies to mitigate the aging process in humans.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Envejecimiento , Obesidad , Telómero , Epigénesis Genética
11.
Cent Nerv Syst Agents Med Chem ; 24(2): 117-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38299298

RESUMEN

Stroke continues to be the main cause of motor disability worldwide. While rehabilitation has been promised to improve recovery after stroke, efficacy in clinical trials has been mixed. We need to understand the cortical recombination framework to understand how biomarkers for neurophysiological reorganized neurotechnologies alter network activity. Here, we summarize the principles of the movement network, including the current evidence of changes in the connections and function of encephalic regions, recovery from stroke and the therapeutic effects of rehabilitation. Overall, improvements or therapeutic effects in limb motor control following stroke are correlated with the effects of interhemispheric competition or compensatory models of the motor supplementary cortex. This review suggests that future research should focus on cross-regional communication and provide fundamental insights into further treatment and rehabilitation for post-stroke patients.


Asunto(s)
Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Recuperación de la Función/fisiología , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos , Animales , Plasticidad Neuronal/fisiología , Red Nerviosa/fisiopatología , Red Nerviosa/fisiología , Corteza Motora/fisiopatología , Corteza Motora/fisiología
12.
Sci Data ; 11(1): 131, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272904

RESUMEN

The brain-computer interface (BCI) is a technology that involves direct communication with parts of the brain and has evolved rapidly in recent years; it has begun to be used in clinical practice, such as for patient rehabilitation. Patient electroencephalography (EEG) datasets are critical for algorithm optimization and clinical applications of BCIs but are rare at present. We collected data from 50 acute stroke patients with wireless portable saline EEG devices during the performance of two tasks: 1) imagining right-handed movements and 2) imagining left-handed movements. The dataset consists of four types of data: 1) the motor imagery instructions, 2) raw recording data, 3) pre-processed data after removing artefacts and other manipulations, and 4) patient characteristics. This is the first open dataset to address left- and right-handed motor imagery in acute stroke patients. We believe that the dataset will be very helpful for analysing brain activation and designing decoding methods that are more applicable for acute stroke patients, which will greatly facilitate research in the field of motor imagery-BCI.


Asunto(s)
Interfaces Cerebro-Computador , Accidente Cerebrovascular , Humanos , Algoritmos , Electroencefalografía/métodos , Mano/fisiología , Movimiento/fisiología
13.
Biol Psychiatry ; 95(7): 662-675, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37573005

RESUMEN

BACKGROUND: Genetic variation in the TCF4 (transcription factor 4) gene is associated with risk for a variety of developmental and psychiatric conditions, which includes a syndromic form of autism spectrum disorder called Pitt-Hopkins syndrome (PTHS). TCF4 encodes an activity-dependent transcription factor that is highly expressed during cortical development and in animal models has been shown to regulate various aspects of neuronal development and function. However, our understanding of how disease-causing mutations in TCF4 confer pathophysiology in a human context is lacking. METHODS: To model PTHS, we differentiated human cortical neurons from human induced pluripotent stem cells that were derived from patients with PTHS and neurotypical individuals. To identify pathophysiology and disease mechanisms, we assayed cortical neurons with whole-cell electrophysiology, Ca2+ imaging, multielectrode arrays, immunocytochemistry, and RNA sequencing. RESULTS: Cortical neurons derived from patients with TCF4 mutations showed deficits in spontaneous synaptic transmission, network excitability, and homeostatic plasticity. Transcriptomic analysis indicated that these phenotypes resulted in part from altered expression of genes involved in presynaptic neurotransmission and identified the presynaptic binding protein RIMBP2 as the most differentially expressed gene in PTHS neurons. Remarkably, TCF4-dependent deficits in spontaneous synaptic transmission and network excitability were rescued by increasing RIMBP2 expression in presynaptic neurons. CONCLUSIONS: Taken together, these results identify TCF4 as a critical transcriptional regulator of human synaptic development and plasticity and specifically identifies dysregulation of presynaptic function as an early pathophysiology in PTHS.


Asunto(s)
Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Animales , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación , Neuronas/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
14.
Front Microbiol ; 14: 1292937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075924

RESUMEN

Rhodopseudomonas palustris CGA009 is a Gram-negative, purple non-sulfur, metabolically diverse bacterium with wide-ranging habitats. The extraordinary ability of R. palustris to decompose a variety of raw materials and convert them into high-value products makes it an attractive host for biotechnology and industrial applications. However, being a freshwater bacterium R. palustris has limited application in highly-saline environments. Therefore, it is of great significance to obtain the salt-tolerant strain of R. palustris and understand its tolerance mechanism. In this study, R. palustris CGA009 was successfully evolved into eight salt-tolerant strains using an adaptive laboratory evolution technique. RPAS-11 (R. palustris anti-salt strain 11) was selected as the best salt-tolerant strain and was used in further studies to explore the salt-tolerance mechanism. The expression of most genes associated with the carotenoid synthesis in RPAS-11 increased significantly under high concentration of salt stress, suggesting that carotenoid synthesis is one of the reasons for the salt tolerance of RPAS-11. Gene overexpression and knockout experiments were performed to get clear about the role of carotenoids in salt stress tolerance. RPAS-11-IDI, the mutant with overexpression of IDI (Isopentenyl diphosphate isomerase) exhibited enhanced salt tolerance, whereas the knockout mutant CGA009-∆crtI showed a decline in salt tolerance. In addition, the results indicated that rhodopin, a carotenoid compound, was the key pigment responsible for the salt tolerance in R. palustris. Furthermore, the production of lycopene, a widely-used carotenoid, was also increased. Taken together, our research helps to deepen the understanding of the salt tolerance mechanism of R. palustris and also widens the application of R. palustris in highly-saline environments.

15.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5113-5121, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114101

RESUMEN

Obesity has been identified as a chronic low-grade systemic inflammation and a key risk factor for diseases such as diabetes, hypertension, and malignancies, and has become an urgent global health burden. Adipose tissue macrophages play a significant role in adipose immune homeostasis and inflammatory responses. Under different conditions, they can be polarized into pro-inflammatory M1 phenotype or anti-inflammatory M2 phenotype. In obese individuals, there is abnormal polarization of macrophages in adipose tissue, leading to an imbalance in the M1/M2 phenotype dynamic equilibrium and the development of pathological inflammation. Therefore, restoring the balance of M1/M2 macrophage polarization is an important potential target for the treatment of chronic inflammation in obesity. Studies have shown that traditional Chinese medicine(TCM) can positively modulate macrophage polarization and produce beneficial effects on obesity. Based on existing evidence, this paper systematically reviewed the potential mechanisms of TCM in improving chronic inflammation in obesity from the perspective of macrophage polarization, in order to provide evidence for the clinical diagnosis and treatment of chronic inflammation in obesity with TCM and offer new insights for related research design and the development of new TCM.


Asunto(s)
Medicina Tradicional China , Obesidad , Humanos , Animales , Ratones , Obesidad/tratamiento farmacológico , Tejido Adiposo/patología , Inflamación/tratamiento farmacológico , Macrófagos , Ratones Endogámicos C57BL
16.
Anal Chim Acta ; 1283: 341934, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977799

RESUMEN

Residual explosives in conflicting zones have caused irreversible damage to human safety and the environment. Whole-cell biosensors can to detect remnants of buried explosives, such as 2,4-dinitrotoluene (DNT), a stable and highly volatile compound in explosives. However, all the reported whole-cell biosensors utilize fluorescence or luminescence as the biological markers, making their detection difficult in real minefields. Here, we presented a lycopene-based whole-cell biosensor in Escherichia coli to output visible signals in response to DNT, which can help in the visual detection of buried explosives. To construct the whole-cell biosensor, the DNT-responsive promoter yqjF was used as the sensing element, and the lycopene synthetic gene cassette crtEBI was served as the reporting element. Then, the metabolic flux for lycopene production was enhanced to improve the output signal of the whole-cell biosensor, and a terminator was utilized to reduce the background interference. The optimized biosensor LSZ05 could perceive at least 1 mg/L DNT. The DNT-specificity and robust performance of the biosensor under different environmental factors were confirmed. Our results showed that converting the biosensor into a lyophilized powder was an effective storage method. The biosensor LSZ05 could effectively detect DNT in two kinds of soil samples. The lycopene-based whole-cell biosensor could also be used to visually detect heavy metals. Our findings laid the foundation for visually detecting buried explosives in minefields, which was a valuable supplement to the reported biosensors. The methods used for optimizing the lycopene-based whole-cell biosensor, including the improvement of the output signal and reduction of background interference, were quite effective.


Asunto(s)
Técnicas Biosensibles , Sustancias Explosivas , Metales Pesados , Humanos , Licopeno/metabolismo , Escherichia coli/genética , Técnicas Biosensibles/métodos
17.
Appl Environ Microbiol ; 89(10): e0121823, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815338

RESUMEN

Enzyme stability is often a limiting factor in the microbial production of high-value-added chemicals and commercial enzymes. A previous study by our research group revealed that the unstable isoprene synthase from Ipomoea batatas (IspSib) critically limits isoprene production in engineered Escherichia coli. Directed evolution was, therefore, performed in the present study to improve the thermostability of IspSib. First, a tripartite protein folding system designated as lac'-IspSib-'lac, which could couple the stability of IspSib to antibiotic ampicillin resistance, was successfully constructed for the high-throughput screening of variants. Directed evolution of IspSib was then performed through two rounds of random mutation and site-saturation mutation, which produced three variants with higher stability: IspSibN397V A476V, IspSibN397V A476T, and IspSibN397V A476C. The subsequent in vitro thermostability test confirmed the increased protein stability. The melting temperatures of the screened variants IspSibN397V A476V, IspSibN397V A476T, and IspSibN397V A476C were 45.1 ± 0.9°C, 46.1 ± 0.7°C, and 47.2 ± 0.3°C, respectively, each of which was higher than the melting temperature of wild-type IspSib (41.5 ± 0.4°C). The production of isoprene at the shake-flask fermentation level was increased by 1.94-folds, to 1,335 mg/L, when using IspSibN397V A476T. These findings provide insights into the optimization of the thermostability of terpene synthases, which are key enzymes for isoprenoid production in engineered microorganisms. In addition, the present study would serve as a successful example of improving enzyme stability without requiring detailed structural information or catalytic reaction mechanisms.IMPORTANCEThe poor thermostability of IspSib critically limits isoprene production in engineered Escherichia coli. A tripartite protein folding system designated as lac'-IspSib-'lac, which could couple the stability of IspSib to antibiotic ampicillin resistance, was successfully constructed for the first time. In order to improve the enzyme stability of IspSib, the directed evolution of IspSib was performed through error-PCR, and high-throughput screening was realized using the lac'-IspSib-'lac system. Three positive variants with increased thermostability were obtained. The thermostability test and the melting temperature analysis confirmed the increased stability of the enzyme. The production of isoprene was increased by 1.94-folds, to 1,335 mg/L, using IspSibN397V A476T. The directed evolution process reported here is also applicable to other terpene synthases key to isoprenoid production.


Asunto(s)
Escherichia coli , Hemiterpenos , Escherichia coli/metabolismo , Hemiterpenos/metabolismo , Butadienos/metabolismo , Temperatura , Antibacterianos/metabolismo , Estabilidad de Enzimas
18.
Neuron ; 111(20): 3270-3287.e8, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37557180

RESUMEN

The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.


Asunto(s)
Nivel de Alerta , Tálamo , Ratones , Animales , Nivel de Alerta/fisiología , Tálamo/fisiología , Vigilia/fisiología , Neuronas/fisiología , Transmisión Sináptica
19.
Front Endocrinol (Lausanne) ; 14: 1216708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522129

RESUMEN

Objective: The aim was to conduct a systematic review and meta-analysis for assessing the effectiveness and safety of dietary polyphenol curcumin supplement on metabolic, inflammatory, and oxidative stress indices in patients with metabolic syndrome (MetS). Methods: A comprehensive search for clinical trials was conducted in the following scientific databases: PubMed, SCOPUS, Cochrane Library, EMBASE, Web of Science, and China Biological Medicine. Randomized controlled trials (RCTs) evaluating the efficacy and safety of curcumin supplement for MetS were identified. A random-effects meta-analysis was performed using inverse variance, and efficacy was expressed as mean difference (MD) with 95% confidence interval (CI). The metabolic syndrome markers that were evaluated in the present study included waist circumference (WC), fasting blood sugar (FBS), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), tumor necrosis factor-a (TNF-a), interleukin 6 (IL-6), C-reactive protein (CRP), ultrasensitive c-reactive protein (hsCRP), and malondialdehyde (MDA). By employing the Cochrane tool, RCTs were assessed for bias risk. Results: A total of 785 participants from 13 RCTs were included, with intervention durations ranging from 4 to 12 weeks. Compared with the control group, the curcumin group had positive effects on WC (MD = -2.16, 95% CI: -3.78 to -0.54, p = 0.009, seven studies), FBS (MD = -8.6, 95% CI: -15.45 to -1.75, p = 0.01, nine studies), DBP (MD = -2.8, 95% CI: -4.53 to - 1.06, p = 0.002, five studies), HDL-C (MD = 4.98, 95% CI: 2.58 to 7.38, p < 0.0001, eight studies), TNF-a (MD = -12.97, 95% CI: -18.37 to -7.57, p < 0.00001, two studies), CRP (MD = - 1.24, 95% CI: -1.71 to -0.77, p < 0.00001, two studies), and MDA (MD = -2.35, 95% CI: -4.47 to -0.24, p = 0.03, three studies). These improvements were statistically significant. Meanwhile, there was no significant improvement in SBP (MD = -4.82, 95% CI: -9.98 to 0.35, p = 0.07, six studies), TG (MD = 1.28, 95% CI: -3.75 to 6.30, p = 0.62, eight studies), IL-6 (MD = -1.5, 95% CI: -3.97 to 0.97, p = 0.23, two studies), or hsCRP (MD = -1.10, 95% CI: -4.35 to 2.16, p < 0.51, two studies). FBS, SBP, HDL-C, IL-6, CRP, hsCRP, and MDA had a relatively high heterogeneity. Conclusion: Curcumin exhibited promising potential in enhancing markers associated with metabolic syndrome, including inflammation. However, additional studies are required to confirm such findings since the included evidence is limited and has a relatively high heterogeneity. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42022362553.


Asunto(s)
Curcumina , Síndrome Metabólico , Estrés Oxidativo , Polifenoles , Ensayos Clínicos Controlados Aleatorios como Asunto , Curcumina/farmacología , Curcumina/uso terapéutico , Suplementos Dietéticos , Síndrome Metabólico/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Polifenoles/farmacología , Polifenoles/uso terapéutico , Inflamación , Humanos , Curcuma
20.
Plants (Basel) ; 12(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679097

RESUMEN

Iron (Fe) is an essential micronutrient for plant growth and development. Fe availability affects crops' productivity and the quality of their derived products and thus human nutrition. Fe is poorly available for plant use since it is mostly present in soils in the form of insoluble oxides/hydroxides, especially at neutral to alkaline pH. How plants cope with low-Fe conditions and acquire Fe from soil has been investigated for decades. Pioneering work highlighted that plants have evolved two different strategies to mine Fe from soils, the so-called Strategy I (Fe reduction strategy) and Strategy II (Fe chelation strategy). Strategy I is employed by non-grass species whereas graminaceous plants utilize Strategy II. Recently, it has emerged that these two strategies are not fully exclusive and that the mechanism used by plants for Fe uptake is directly shaped by the characteristics of the soil on which they grow (e.g., pH, oxygen concentration). In this review, recent findings on plant Fe uptake and the regulation of this process will be summarized and their impact on our understanding of plant Fe nutrition will be discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...