Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 33(12): e2006819, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33576143

RESUMEN

Continuous-wave (CW) room-temperature (RT) laser operation with low energy consumption is an ultimate goal for electrically driven lasers. A monolithically integrated perovskite laser in a chip-level fiber scheme is ideal. However, because of the well-recognized air and thermal instabilities of perovskites, laser action in a perovskite has mostly been limited to either pulsed or cryogenic-temperature operations. Most CW laser operations at RT have had poor durability. Here, crystal fibers that have robust and high-heat-load nature are shown to be the key to enabling the first demonstration of ultralow-threshold CW RT laser action in a compact, monolithic, and inexpensive crystal fiber/nanoperovskite hybrid architecture that is directly pumped with a 405 nm diode laser. Purcell-enhanced light-matter coupling between the atomically smooth fiber microcavity and the perovskite nanocrystallites gain medium enables a high Q (≈1500) and a high ß (0.31). This 762 nm laser outperforms previously reported structures with a record-low threshold of 132 nW and an optical-to-optical slope conversion efficiency of 2.93%, and it delivers a stable output for CW and RT operation. These results represent a significant advancement toward monolithic all-optical integration.

2.
Appl Opt ; 45(11): 2396-8, 2006 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-16623234

RESUMEN

A prototype of a GaN-based stacked micro-optics system is demonstrated. The system consists of a GaN microlens, GaN membrane gratings, six spacers, a spatial filter, and a 980 nm VCSEL. The laser beam is collimated by the GaN microlens and diffracted by the GaN membrane grating. The systems can be used in blue-violet-UV micro-optics systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...