RESUMEN
Oxygen production within human cells plays a critical role in cellular metabolism and is implicated in various diseases, including cancer. Investigating cellular heterogeneity under oxygen stimulation is crucial for elucidating disease mechanisms and advancing early therapeutic design. In this study, the platinum-based wireless nanopore electrode (WNE) with a diameter of ≈200 nm is employed as a powerful tool to produce oxygen molecules near the cell nucleus. The oxygen production can be quantitatively controlled by adjusting the applied voltage. Through delivering oxygen near the cancer cell nucleus, this technique shows the capacity to alleviate the hypoxia microenvironment, a key factor in chemotherapy resistance. Furthermore, by modulating oxygen levels within individual living cells and delivering chemotherapeutic agents to the cancer cell nucleus, this approach offers significant potential for single-cell manipulation and the investigation of cellular heterogeneity under oxygen stimulation.
RESUMEN
Cell migration is known to be a fundamental biological process, playing an essential role in development, homeostasis, and diseases. This paper introduces a cell tracking algorithm named HFM-Tracker (Hybrid Feature Matching Tracker) that automatically identifies cell migration behaviours in consecutive images. It combines Contour Attention (CA) and Adaptive Confusion Matrix (ACM) modules to accurately capture cell contours in each image and track the dynamic behaviors of migrating cells in the field of view. Cells are firstly located and identified via the CA module-based cell detection network, and then associated and tracked via a cell tracking algorithm employing a hybrid feature-matching strategy. This proposed HFM-Tracker exhibits superiorities in cell detection and tracking, achieving 75% in MOTA (Multiple Object Tracking Accuracy) and 65% in IDF1 (ID F1 score). It provides quantitative analysis of the cell morphology and migration features, which could further help in understanding the complicated and diverse cell migration processes.
Asunto(s)
Algoritmos , Movimiento Celular , Rastreo Celular , Rastreo Celular/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Sleep inertia (SI) is a time period during the transition from sleep to wakefulness wherein individuals perceive low vigilance with cognitive impairments; SI is generally identified by longer reaction times (RTs) in attention tasks immediately after awakening followed by a gradual RT reduction along with waking time. The sluggish recovery of vigilance in SI involves a dynamic process of brain functions, as evidenced in recent functional magnetic resonance imaging (fMRI) studies in within-network and between-network connectivity. However, these fMRI findings were generally based on the presumption of unchanged neurovascular coupling (NVC) before and after sleep, which remains an uncertain factor to be investigated. Therefore, we recruited 12 young participants to perform a psychomotor vigilance task (PVT) and a breath-hold task of cerebrovascular reactivity (CVR) before sleep and thrice after awakening (A1, A2, and A3, with 20 min intervals in between) using simultaneous electroencephalography (EEG)-fMRI recordings. If the NVC were to hold in SI, we hypothesized that time-varying consistencies could be found between the fMRI response and EEG beta power, but not in neuron-irrelevant CVR. Results showed that the reduced accuracy and increased RT in the PVT upon awakening was consistent with the temporal patterns of the PVT-induced fMRI responses (thalamus, insula, and primary motor cortex) and the EEG beta power (Pz and CP1). The neuron-irrelevant CVR did not show the same time-varying pattern among the brain regions associated with PVT. Our findings imply that the temporal dynamics of fMRI indices upon awakening are dominated by neural activities. This is the first study to explore the temporal consistencies of neurovascular components on awakening, and the discovery provides a neurophysiological basis for further neuroimaging studies regarding SI.
RESUMEN
Introduction: The concept of local sleep refers to the phenomenon of local brain activity that modifies neural networks during unresponsive global sleep. Such network rewiring may differ across spatial scales; however, the global and local alterations in brain systems remain elusive in human sleep. Materials and Methods: We examined cross-scale changes of brain networks in sleep. Functional magnetic resonance imaging data were acquired from 28 healthy participants during nocturnal sleep. We adopted both metrics of connectivity (functional connectivity [FC] and regional homogeneity [ReHo]) and complexity (multiscale entropy) to explore the global and local functionality of the neural assembly across nonrapid eye movement sleep stages. Results: Long-range FC decreased with sleep depth, whereas local ReHo peaked at the N2 stage and reached its lowest level at the N3 stage. Entropy exhibited a general decline at the local scale (Scale 1) as sleep deepened, whereas the coarse-scale entropy (Scale 3) was consistent across stages. Discussion: The negative correlation between Scale-1 entropy and ReHo reflects the enhanced signal regularity and synchronization in sleep, identifying the information exchange at the local scale. The N2 stage showed a distinctive pattern toward local information processing with scrambled long-distance information exchange, indicating a specific time window for network reorganization. Collectively, the multidimensional metrics indicated an imbalanced global-local relationship among brain functional networks across sleep-wake stages.