Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Cell ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39353436

RESUMEN

The capability to spatially explore RNA biology in formalin-fixed paraffin-embedded (FFPE) tissues holds transformative potential for histopathology research. Here, we present pathology-compatible deterministic barcoding in tissue (Patho-DBiT) by combining in situ polyadenylation and computational innovation for spatial whole transcriptome sequencing, tailored to probe the diverse RNA species in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for 5 years. Furthermore, genome-wide single-nucleotide RNA variants can be captured to distinguish malignant subclones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis. Single-cell level Patho-DBiT dissects the spatiotemporal cellular dynamics driving tumor clonal architecture and progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to aid in clinical pathology evaluation.

3.
Adv Mater ; : e2406456, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295460

RESUMEN

Here, a unique crossbar architecture is designed and fabricated, incorporating vertically integrated self-assembled monolayers in electronic devices. This architecture is used to showcase 100 individual vertical molecular junctions on a single chip with a high yield of working junctions and high device uniformity. The study introduces a transfer approach for patterned liquid-metal eutectic alloy of gallium and indium top electrodes, enabling the creation of fully flexible molecular devices with electrical functionalities. The devices exhibit excellent charge transport performance, sustain a high rectification ratio (>103), and stable endurance and retention properties, even when the devices are significantly bent. Furthermore, Boolean logic gates, including OR and AND gates, as well as half-wave and full-wave rectifying circuits, are successfully implemented. The unique design of the flexible molecular device represents a significant step in harnessing the potential of molecular devices for high-density integration and possible molecule-based computing.

4.
ACS Nano ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276130

RESUMEN

Intrinsically disordered proteins (IDPs) are emerging therapeutic targets for human diseases. However, probing their transient conformations remains challenging because of conformational heterogeneity. To address this problem, we developed a biosensor using a point-functionalized silicon nanowire (SiNW) that allows for real-time sampling of single-molecule dynamics. A single IDP, N-terminal transactivation domain of tumor suppressor protein p53 (p53TAD1), was covalently conjugated to the SiNW through chemical engineering, and its conformational transition dynamics was characterized as current fluctuations. Furthermore, when a globular protein ligand in solution bound to the targeted p53TAD1, protein-protein interactions could be unambiguously distinguished from large-amplitude current signals. These proof-of-concept experiments enable semiquantitative, realistic characterization of the structural properties of IDPs and constitute the basis for developing a valuable tool for protein profiling and drug discovery in the future.

5.
bioRxiv ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39345645

RESUMEN

The phenotypic and functional states of a cell are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome, and metabolome. Spatial omics approaches have enabled the capture of information from different molecular layers directly in the tissue context. However, current technologies are limited to map one to two modalities at the same time, providing an incomplete representation of cellular identity. Such data is inadequate to fully understand complex biological systems and their underlying regulatory mechanisms. Here we present spatial-Mux-seq, a multi-modal spatial technology that allows simultaneous profiling of five different modalities, including genome-wide profiles of two histone modifications and open chromatin, whole transcriptome, and a panel of proteins at tissue scale and cellular level in a spatially resolved manner. We applied this technology to generate multi-modal tissue maps in mouse embryos and mouse brains, which discriminated more cell types and states than unimodal data. We investigated the spatiotemporal relationship between histone modifications, chromatin accessibility, gene and protein expression in neuron differentiation revealing the relationship between tissue organization, function, and gene regulatory networks. We were able to identify a radial glia spatial niche and revealed spatially changing gradient of epigenetic signals in this region. Moreover, we revealed previously unappreciated involvement of repressive histone marks in the mouse hippocampus. Collectively, the spatial multi-omics approach heralds a new era for characterizing tissue and cellular heterogeneity that single modality studies alone could not reveal.

6.
Circ Res ; 135(6): 685-700, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39105287

RESUMEN

BACKGROUND: Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized. METHODS: We utilized cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes. RESULTS: This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCIIhi (major histocompatibility complex class II), monocyte-platelet aggregates, as well as nonclassical, and several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII+CD275+ MHCIIhi, CD42b+ monocyte-platelet aggregates, CD16+CD99- nonclassical monocytes, and CD99+ classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol. CONCLUSIONS: This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.


Asunto(s)
Enfermedades Cardiovasculares , Monocitos , Análisis de la Célula Individual , Monocitos/metabolismo , Monocitos/inmunología , Animales , Análisis de la Célula Individual/métodos , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Humanos , Ratones , Masculino , Ratones Endogámicos C57BL , Femenino , Transcriptoma , Factores de Riesgo de Enfermedad Cardiaca , Persona de Mediana Edad , Perfilación de la Expresión Génica/métodos
8.
Sci Adv ; 10(28): eado1125, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996014

RESUMEN

Chirality is an important aspect of nature, and numerous macroscopic methods have been developed to understand and control chirality. For the chiral tertiary amines, their flexible flipping process makes it possible to achieve high chiral controllability without bond formation and breaking. Here, we present a type of stable chiral single-molecule devices formed by tertiary amines, using graphene-molecule-graphene single-molecule junctions. These single-molecule devices allow real-time, in situ, and long-time measurements of the flipping process of an individual chiral nitrogen center with high temporal resolution. Temperature- and bias voltage-dependent experiments, along with theoretical investigations, revealed diverse chiral intermediates, indicating the regulation of the flipping dynamics by energy-related factors. Angle-dependent measurements further demonstrated efficient enrichment of chiral states using linearly polarized light by a symmetry-related factor. This approach offers a reliable means for understanding the chirality's origin, elucidating microscopic chirality regulation mechanisms, and aiding in the design of effective drugs.

9.
Hum Brain Mapp ; 45(11): e26708, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39056477

RESUMEN

Neuroimaging data acquired using multiple scanners or protocols are increasingly available. However, such data exhibit technical artifacts across batches which introduce confounding and decrease reproducibility. This is especially true when multi-batch data are analyzed using complex downstream models which are more likely to pick up on and implicitly incorporate batch-related information. Previously proposed image harmonization methods have sought to remove these batch effects; however, batch effects remain detectable in the data after applying these methods. We present DeepComBat, a deep learning harmonization method based on a conditional variational autoencoder and the ComBat method. DeepComBat combines the strengths of statistical and deep learning methods in order to account for the multivariate relationships between features while simultaneously relaxing strong assumptions made by previous deep learning harmonization methods. As a result, DeepComBat can perform multivariate harmonization while preserving data structure and avoiding the introduction of synthetic artifacts. We apply this method to cortical thickness measurements from a cognitive-aging cohort and show DeepComBat qualitatively and quantitatively outperforms existing methods in removing batch effects while preserving biological heterogeneity. Additionally, DeepComBat provides a new perspective for statistically motivated deep learning harmonization methods.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Neuroimagen , Humanos , Neuroimagen/métodos , Neuroimagen/normas , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/diagnóstico por imagen , Anciano , Masculino , Femenino
10.
Nat Genet ; 56(8): 1712-1724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048792

RESUMEN

Kidneys are intricate three-dimensional structures in the body, yet the spatial and molecular principles of kidney health and disease remain inadequately understood. We generated high-quality datasets for 81 samples, including single-cell, single-nuclear, spot-level (Visium) and single-cell resolution (CosMx) spatial-RNA expression and single-nuclear open chromatin, capturing cells from healthy, diabetic and hypertensive diseased human kidneys. Combining these data, we identify cell types and map them to their locations within the tissue. Unbiased deconvolution of the spatial data identifies the following four distinct microenvironments: glomerular, immune, tubule and fibrotic. We describe the complex organization of microenvironments in health and disease and find that the fibrotic microenvironment is able to molecularly classify human kidneys and offers an improved prognosis compared to traditional histopathology. We provide a comprehensive spatially resolved molecular roadmap of the human kidney and the fibrotic process, demonstrating the clinical utility of spatial transcriptomics.


Asunto(s)
Microambiente Celular , Progresión de la Enfermedad , Fibrosis , Enfermedades Renales , Riñón , Análisis de la Célula Individual , Humanos , Riñón/patología , Microambiente Celular/genética , Enfermedades Renales/genética , Enfermedades Renales/patología , Transcriptoma , Perfilación de la Expresión Génica , Multiómica
11.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915567

RESUMEN

The human cerebral cortex, pivotal for advanced cognitive functions, is composed of six distinct layers and dozens of functionally specialized areas1,2. The layers and areas are distinguished both molecularly, by diverse neuronal and glial cell subtypes, and structurally, through intricate spatial organization3,4. While single-cell transcriptomics studies have advanced molecular characterization of human cortical development, a critical gap exists due to the loss of spatial context during cell dissociation5,6,7,8. Here, we utilized multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based cell segmentation, to examine the molecular, cellular, and cytoarchitectural development of human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing 16 million single cells, spans eight cortical areas across four time points in the second and third trimesters. We uncovered an early establishment of the six-layer structure, identifiable in the laminar distribution of excitatory neuronal subtypes by mid-gestation, long before the emergence of cytoarchitectural layers. Notably, while anterior-posterior gradients of neuronal subtypes were generally observed in most cortical areas, a striking exception was the sharp molecular border between primary (V1) and secondary visual cortices (V2) at gestational week 20. Here we discovered an abrupt binary shift in neuronal subtype specification at the earliest stages, challenging the notion that continuous morphogen gradients dictate mid-gestation cortical arealization6,10. Moreover, integrating single-nuclei RNA-sequencing and in situ whole transcriptomics revealed an early upregulation of synaptogenesis in V1-specific Layer 4 neurons, suggesting a role of synaptogenesis in this discrete border formation. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This work not only provides a valuable resource for the field, but also establishes a spatially resolved single-cell analysis paradigm that paves the way for a comprehensive developmental atlas of the human brain.

12.
Hum Brain Mapp ; 45(8): e26714, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878300

RESUMEN

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.


Asunto(s)
Encéfalo , Fenotipo , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Estudios de Cohortes , Femenino , Masculino
13.
J Am Chem Soc ; 146(26): 17765-17772, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38902874

RESUMEN

Chirality, a fundamental attribute of nature, significantly influences a wide range of phenomena related to physical properties, chemical reactions, biological pharmacology, and so on. As a pivotal aspect of chirality research, chirality recognition contributes to the synthesis of complex chiral products from simple chiral compounds and exhibits intricate interplay between chiral materials. However, macroscopic detection technologies cannot unveil the dynamic process and intrinsic mechanisms of single-molecule chirality recognition. Herein, we present a single-molecule detection platform based on graphene-molecule-graphene single-molecule junctions to measure the chirality recognition involving interactions between amines and chiral alcohols. This approach leads to the realization of in situ and real-time direct observation of chirality recognition at the single-molecule level, demonstrating that chiral alcohols exhibit compelling potential to induce the formation of the corresponding chiral configuration of molecules. The amalgamation of theoretical analyses with experimental findings reveals a synergistic action between electrostatic interactions and steric hindrance effects in the chirality recognition process, thus substantiating the microscopic mechanism governing the chiral structure-activity relationship. These studies open up a pathway for exploring novel chiral phenomena from the fundamental limits of chemistry, such as chiral origin and chiral amplification, and offer important insights into the precise synthesis of chiral materials.

15.
JACS Au ; 4(4): 1278-1294, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665639

RESUMEN

Molecules, with structural, scaling, and interaction diversities, are crucial for the emergence of complex behaviors. Interactions are essential prerequisites for complex systems to exhibit emergent properties that surpass the sum of individual component characteristics. Tracing the origin of complex molecular behaviors from interactions is critical to understanding ensemble emergence, and requires insights at the single-molecule level. Electrical signals from single-molecule junctions enable the observation of individual molecular behaviors, as well as intramolecular and intermolecular interactions. This technique provides a foundation for bottom-up explorations of emergent complexity. This Perspective highlights investigations of various interactions via single-molecule junctions, including intramolecular orbital and weak intermolecular interactions and interactions in chemical reactions. It also provides potential directions for future single-molecule junctions in complex system research.

16.
Cancer Discov ; 14(4): 625-629, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571426

RESUMEN

SUMMARY: The transition from 2D to 3D spatial profiling marks a revolutionary era in cancer research, offering unprecedented potential to enhance cancer diagnosis and treatment. This commentary outlines the experimental and computational advancements and challenges in 3D spatial molecular profiling, underscoring the innovation needed in imaging tools, software, artificial intelligence, and machine learning to overcome implementation hurdles and harness the full potential of 3D analysis in the field.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Aprendizaje Automático , Programas Informáticos , Neoplasias/diagnóstico , Neoplasias/genética
17.
bioRxiv ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-38463994

RESUMEN

Human genetic studies have repeatedly associated ADAMTS7 with atherosclerotic cardiovascular disease. Subsequent investigations in mice demonstrated that ADAMTS7 is proatherogenic and induced in response to vascular injury and that the proatherogenicity of ADAMTS7, a secreted protein, is due to its catalytic activity. However, the cell-specific mechanisms governing ADAMTS7 proatherogenicity remain unclear. To determine which vascular cell types express ADAMTS7, we interrogated single-cell RNA sequencing of human carotid atherosclerosis and found ADAMTS7 expression in smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts. We subsequently created SMC- and EC-specific Adamts7 conditional knockout and transgenic mice. Conditional knockout of Adamts7 in either cell type is insufficient to reduce atherosclerosis, whereas transgenic induction in either cell type increases atherosclerosis. In SMC transgenic mice, this increase coincides with an expansion of lipid-laden SMC foam cells and decreased fibrous cap formation. RNA-sequencing in SMCs revealed an upregulation of lipid uptake genes typically assigned to macrophages. Subsequent experiments demonstrated that ADAMTS7 increases SMC oxLDL uptake through increased CD36 levels. Furthermore, Cd36 expression is increased due to increased levels of PU.1, a transcription factor typically associated with myeloid fate determination. In summary, Adamts7 expression in either SMCs or ECs promotes SMC foam cell formation and atherosclerosis. In SMCs, ADAMTS7 promotes oxLDL uptake via increased PU.1 and Cd36 expression, thereby increasing SMC foam cell formation and atherosclerosis.

19.
Arterioscler Thromb Vasc Biol ; 44(4): 930-945, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38385291

RESUMEN

BACKGROUND: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS: We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.


Asunto(s)
Aterosclerosis , Enfermedades de las Arterias Carótidas , Placa Aterosclerótica , Humanos , Células Endoteliales/metabolismo , Aterosclerosis/patología , Placa Aterosclerótica/patología , Enfermedades de las Arterias Carótidas/patología , Epítopos/metabolismo , Miocitos del Músculo Liso/metabolismo
20.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370833

RESUMEN

Spatial transcriptomics has emerged as a powerful tool for dissecting spatial cellular heterogeneity but as of today is largely limited to gene expression analysis. Yet, the life of RNA molecules is multifaceted and dynamic, requiring spatial profiling of different RNA species throughout the life cycle to delve into the intricate RNA biology in complex tissues. Human disease-relevant tissues are commonly preserved as formalin-fixed and paraffin-embedded (FFPE) blocks, representing an important resource for human tissue specimens. The capability to spatially explore RNA biology in FFPE tissues holds transformative potential for human biology research and clinical histopathology. Here, we present Patho-DBiT combining in situ polyadenylation and deterministic barcoding for spatial full coverage transcriptome sequencing, tailored for probing the diverse landscape of RNA species even in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for five years. Furthermore, genome-wide single nucleotide RNA variants can be captured to distinguish different malignant clones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA-mRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis trajectory. High resolution Patho-DBiT at the cellular level reveals a spatial neighborhood and traces the spatiotemporal kinetics driving tumor progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to study human tissue biology and aid in clinical pathology evaluation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...