Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(15): 19773-19782, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-36999662

RESUMEN

The hydrophilic/hydrophobic cooperative interface provides a smart platform to control liquid distribution and delivery. Through the fusion of flexibility and complex structure, we present a manipulable, open, and dual-layered liquid channel (MODLC) for on-demand mechanical control of fluid delivery. Driven by anisotropic Laplace pressure, the mechano-controllable asymmetric channel of MODLC can propel the directional slipping of liquid located between the paired tracks. Upon a single press, the longest transport distance can reach 10 cm with an average speed of ∼3 cm/s. The liquid on the MODLC can be immediately manipulated by pressing or dragging processes, and versatile liquid-manipulating processes on hierarchical MODLC chips have been achieved, including remote droplet magneto-control, continuous liquid distributor, and gas-producing chip. The flexible hydrophilic/hydrophobic interface and its assembly can extend the function and applications of the wettability-patterned interface, which should update our understanding of complex systems for sophisticated liquid transport.

2.
Adv Mater ; 35(17): e2211596, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36807414

RESUMEN

Manipulating fluid with an open channel provides a promising strategy to simplify the current systems. Nevertheless, spontaneous on-surface fluid transport with large flux, high speed, and long distance remains challenging. Inspired by scallop shells, here a shell-like superhydrophilic origami (S-SLO) with multiple-paratactic and dual-asymmetric channels is presented to improve fluid collection. The origami channel can capture various types of liquids, including droplets, flow, and steam, and then transport collected liquid unidirectionally. The S-SLO with 2 mm depth can reach maximum flux of 450 mL h-1 , which is five times the capacity of a flat patterned surface with similar dimension. To diversify the function of such interface, the SLO is further integrated with a superhydrophobic zirconium carbide/silicone coating for enhanced condensation via the collaboration of directional fluid manipulation and a radiative cooling layer. Compared with the unmodified parallel origami, the shell-like origami with a radiative cooling layer shows a 56% improvement in condensate efficiency as well as the directional liquid drainage. This work demonstrates a more accessible design for the optimization of on-surface fluid control, and the improved performance of liquid transport should extend the applications of bioinspired fluid-manipulating interfaces.

3.
Mater Horiz ; 9(7): 1888-1895, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35666656

RESUMEN

Designing advanced interfacial materials is decisive to the improvement of multiphase systems. Inspired by the superior floatability of Pistia stratiotes, here we present a superhydrophobic/hydrophilic 3D Janus floater with a water managing ability. Its self-regulated floatation mechanism, as well as its water removal logic, should provide insight into the development of multifunctional interfacial carriers in the fields of micro-devices, solar evaporation, etc.


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Purificación del Agua , Biodegradación Ambiental , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...