Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 920: 171001, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38365033

RESUMEN

Manganese(II) (Mn(II)) and bromide (Br-) are common in natural waters. This study investigated the effect of in-situ Mn(II) oxidation and preformed MnOx on the brominated trihalomethane (Br-THM) formation during chlorination of bromide-containing waters. The results showed Br-THM formation could be substantially inhibited by in-situ Mn(II) oxidation, but the addition of preformed MnOx had limited influence on Br-THM formation during chlorination of bromide-containing waters. Analysis of bromine species showed that about 30 % bromine species were incorporated into the MnOx particles and formed MnOx-Br during the in-situ Mn(II) oxidation process. Consequently, the availability of reactive bromine species for the reaction with dissolved organic matter (DOM) reduced, leading to less Br-THM formation. X-ray diffraction (XRD) analysis of in-situ Mn(II) oxidation product indicated the presence of Br- decreased the crystallinity of Mn oxides, verifying the bromine species entered MnOx crystal. However, the adsorptive uptake of bromine species by preformed MnOx was negligible and had no impact on Br-THM formation. Inhibition rate of Mn(II) oxidation on THM formation decreased with increasing specific ultraviolet absorbance (SUVA254) value of filtered water, showing SUVA254 could be a good indicator of DOM competition ability for oxidant with Mn(II). In addition, Excitation/Emission Matrix indicated that Mn(II) could form complexes with humic substances, which might also retard the reaction between humic substances and oxidant to form Br-THMs. This study highlighted the inhibiting effect of in-situ Mn(II) oxidation on Br-THM formation during chlorination of bromide-containing waters.

2.
Environ Sci Technol ; 57(30): 11251-11258, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459399

RESUMEN

Nitrogen-containing disinfection byproducts (N-DBPs) are highly toxic DBPs in drinking water. Though, under normal conditions, NO3- could not directly participate in disinfection reactions to generate N-DBPs, here, we first found that NO3- could promote the formation of N-DBPs in corroded iron drinking water pipes. The coexistence of corrosion produced Fe(II) and iron oxides is a critical condition for the transformation of N species; meanwhile, most of the newly generated N-DBPs had aromatic fractions. The Fe-O-C bond formed between iron corrosion products and natural organic matter promoted electron transfer for the N transformation with pyrrolic N as the intermediate N species. Density functional calculation confirmed that the coexistence of Fe(II) and iron oxides effectively reduced the Gibbs free energy for NO3- reduction. ΔG of the key rate-determining step from NO* to NOH* decreased from 1.55 eV on FeOOH to 1.35 eV on Fe(II)+FeOOH. In addition, the large decrease of cell viability of the water samples from 74.3% to 45.4% further confirmed the formation of highly toxic N-DBPs. Thus, in a drinking water distribution system with corroded iron pipes, the low toxic NO3- may increase toxicity risks via N-DBP formation.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Hierro , Desinfectantes/análisis , Desinfectantes/química , Nitrógeno/análisis , Halogenación , Compuestos Ferrosos , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 243: 120320, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454460

RESUMEN

To cope with the demand for good-quality potable water, household point-of-use (POU) facilities such as polypropylene cotton filters (PCFs) are widely used. However, the behaviors of new and used PCFs under discoloration are unclear. In this study, we found that new PCF did not effectively intercept particles under discoloration within the initial 5 d of inflow. In addition, the particles, especially the fine ones, accumulated in the long-used PCF exacerbated the risks of disinfection byproducts (DBPs) and microbes. The concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) in the effluent run through the PCF all increased over time; interestingly, all sharply increased after 5 d in accordance with the decrease in effluent iron particles. During this stage, maximum increases rate of 117.89% in THMs and 75.12% in HANs were observed. For haloacetic acids (HAAs), it served as the dominant contaminants, with concentrations approximately 10-fold greater than those of THMs and HANs. The increase showed that used PCFs could exacerbate the risks in DBPs exposure. Adenosine triphosphate (ATP) also showed a similar trend, with a maximum increase from 0.0033 to 0.0055 nmol/mL. Thus, PCFs can act only as pretreatment units and should be replaced after yellow water events. This study offers important guidance for PCF usage in drinking water purification, especially under discoloration.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Desinfectantes/análisis , Contaminantes Químicos del Agua/análisis , Halogenación , Agua Potable/análisis , Trihalometanos/análisis
4.
Micromachines (Basel) ; 13(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014238

RESUMEN

A piezoelectric micromachined ultrasonic transducer (PMUT) is a microelectromechanical system (MEMS) device that can transmit and receive ultrasonic waves. Given its advantages of high-frequency ultrasound with good directionality and high resolution, PMUT can be used in application scenarios with low power supply, such as fingerprint recognition, nondestructive testing, and medical diagnosis. Here, a PMUT based on an aluminum nitride thin-film material is designed and fabricated. First, the eigenfrequencies of the PMUT are studied with multiphysics coupling simulation software, and the relationship between eigenfrequencies and vibration layer parameters is determined. The transmission performance of the PMUT is obtained via simulation. The PMUT device is fabricated in accordance with the designed simple MEMS processing process. The topography of the PMUT vibration layer is determined via scanning electron microscopy, and the resonant frequency of the PMUT device is 7.43 MHz. The electromechanical coupling coefficient is 2.21% via an LCR tester.

5.
Micromachines (Basel) ; 13(4)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35457901

RESUMEN

Ultrasound is widely used in industry and the agricultural, biomedical, military, and other fields. As key components in ultrasonic applications, the characteristic parameters of ultrasonic transducers fundamentally determine the performance of ultrasonic systems. High-frequency ultrasonic transducers are small in size and require high precision, which puts forward higher requirements for sensor design, material selection, and processing methods. In this paper, a three-dimensional model of a high-frequency piezoelectric micromachined ultrasonic transducer (PMUT) is established based on the finite element method (FEM). This 3D model consists of a substrate, a silicon device layer, and a molybdenum-aluminum nitride-molybdenum (Mo-AlN-Mo) sandwich piezoelectric layer. The effect of the shape of the transducer's vibrating membrane on the transmission performance was studied. Through a discussion of the parametric scanning of the key dimensions of the diaphragms of the three structures, it was concluded that the fundamental resonance frequency of the hexagonal diaphragm was higher than that of the circle and the square under the same size. Compared with the circular diaphragm, the sensitivity of the square diaphragm increased by 8.5%, and the sensitivity of the hexagonal diaphragm increased by 10.7%. The maximum emission sound-pressure level of the hexagonal diaphragm was 6.6 times higher than that of the circular diaphragm. The finite element results show that the hexagonal diaphragm design has great advantages for improving the transmission performance of the high-frequency PMUT.

6.
Nanomaterials (Basel) ; 11(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375303

RESUMEN

Since black silicon was discovered by coincidence, the special material was explored for many amazing material characteristics in optical, surface topography, and so on. Because of the material property, black silicon is applied in many spheres of a photodetector, photovoltaic cell, photo-electrocatalysis, antibacterial surfaces, and sensors. With the development of fabrication technology, black silicon has expanded in more and more applications and has become a research hotspot. Herein, this review systematically summarizes the fabricating method of black silicon, including nanosecond or femtosecond laser irradiation, metal-assisted chemical etching (MACE), reactive ion etching (RIE), wet chemical etching, electrochemical method, and plasma immersion ion implantation (PIII) methods. In addition, this review focuses on the progress in multiple black silicon applications in the past 10 years. Finally, the prospect of black silicon fabricating and various applications are outlined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA