Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 492: 117084, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241930

RESUMEN

T-2 toxin, a highly toxic trichothecene mycotoxin widely found in food and feed, poses a significant threat to human health as well as livestock and poultry industry. Liver, being a crucial metabolic organ, is particularly susceptible to T-2 toxin induced damage characterized by inflammation and oxidative stress. Despite the role of Sirtuin 5 (SIRT5) in mitigating liver injury has been confirmed, its specific impact on T-2 toxin induced liver injury remains to be elucidated. The objective of this study was to investigate the protective role of SIRT5 against T-2 toxin induced liver injury in mice. Following the oral administration of 1 mg/kg.bw of T-2 toxin for 21 consecutive days to SIRT5 knockout (SIRT5-/-) and wild-type (WT) male mice, liver assessments were conducted. Our findings demonstrated that aggravated hepatic pathological injury was observed in SIRT5-/- mice, accompanied by elevated malondialdehyde (MDA) and Fe levels, as well as enhanced expression of glutathione peroxidase 4 (GPX4), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, Gasdermin-D (GSDMD), tumour necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1ß). These results indicated that SIRT5 alleviated hepatic structural damage and dysfunction, while inhibiting oxidative stress, iron accumulation, and NLRP3 inflammasome activation. Analysis revealed a positive correlation among NLRP3 inflammasome activation, iron accumulation, and oxidative stress. Overall, our study demonstrated that SIRT5 mitigated liver injury induced by T-2 toxin through inhibiting iron accumulation, oxidative stress, and NLRP3 inflammasome activation, providing novel insights into the management and prevention of T-2 toxin poisoning.

2.
Poult Sci ; 103(6): 103717, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643746

RESUMEN

Gliotoxin (GT) belongs to the epipolythiodioxopiperazine (ETP) family, which is considered a crucial virulence determinant among the secondary metabolites produced by Aspergillus fumigatus. The metabolites are commonly found in food and feed, contributing to the invasion and immune escape of Aspergillus fumigatus, thereby posing a significant threat to the health of livestock, poultry, and humans. Heterophil extracellular traps (HETs), a novel form of innate immune defense, have been documented in the chicken's innate immune systems for capturing and eliminating invading microbes. However, the effects and mechanisms of GT on the production of duck HETs in vitro remain unknown. In this study, we first confirmed the presence of HETs in duck innate immune systems and further investigated the molecular mechanism underlying GT-induced HETs release. Our results demonstrate that GT can trigger typical release of HETs in duck. The structures of GT-induced HETs structures were characterized by DNA decoration, citrullinated histones 3, and elastase. Furthermore, NADPH oxidase, glycolysis, ERK1/2 and p38 signaling pathway were found to regulate GT-induced HETs. In summary, our findings reveal that gliotoxin activates HETs release in the early innate immune system of duck while providing new insights into the immunotoxicity of GT towards ducks.


Asunto(s)
Patos , Gliotoxina , Inmunidad Innata , Animales , Inmunidad Innata/efectos de los fármacos , Trampas Extracelulares/efectos de los fármacos , Inmunotoxinas/toxicidad
3.
Theriogenology ; 206: 40-48, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178673

RESUMEN

Evidence has shown that microRNA-665 (miR-665) is highly expressed in the mid-luteal phase compared with the early and end-luteal phase of the corpus luteum (CL) life cycle. However, whether miR-665 is a positive regulator of the life span of the CL is still unknown. The objective of this study is to explore the effect of miR-665 on the structural luteolysis in the ovarian CL. In this study, the targeting relationship between miR-665 and hematopoietic prostaglandin synthase (HPGDS) was firstly verified by dual luciferase reporter assay. Then, quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-665 and HPGDS in luteal cells. Following miR-665 overexpression, the apoptosis rate of the luteal cells was determined using flow cytometry; B-cell lymphoma-2 (BCL-2) and caspase-3 mRNA and protein were measured using qRT-PCR and Western blot (WB) analysis. Finally, the DP1 and CRTH2 receptors of PGD2, a synthetic product of HPGDS, were localized using immunofluorescence. Results confirmed that HPGDS was a direct target gene of miR-665, and miR-665 expression was negatively correlated with HPGDS mRNA expression in luteal cells. Meanwhile, after miR-665 was overexpressed, the apoptotic rate of the luteal cells showed a significant decrease (P < 0.05) and this was accompanied by elevated expression levels of anti-apoptotic factor BCL-2 mRNA and protein and decreased expression levels of apoptotic factor caspase-3 mRNA and protein (P < 0.01). Moreover, the immune fluorescence staining results showed that the DP1 receptor was also significantly decreased (P < 0.05), but the CRTH2 receptor was significantly increased (P < 0.05) in luteal cells. Overall, these results indicate that miR-665 reduces the apoptosis of luteal cells via inhibiting caspase-3 expression and promoting BCL-2 expression, and the biological function of miR-665 may be attributed to its target gene HPGDS which regulates the balance of DP1 and CRTH2 receptors expression in luteal cells. As a consequence, this study suggests that miR-665 might be a positive regulator of the life span of the CL rather than destroy the integrity of CL in small ruminants.


Asunto(s)
Células Lúteas , MicroARNs , Femenino , Animales , Células Lúteas/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Cuerpo Lúteo/fisiología , Apoptosis/fisiología , Rumiantes , ARN Mensajero/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , MicroARNs/metabolismo
4.
Am J Transl Res ; 9(12): 5289-5298, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312483

RESUMEN

Pelvic organ prolapse (POP) is a serious health issue that affects many adult women. A common strategy for POP reconstruction is to use scaffold materials to reconstruct the prolapsed pelvic organ. However, the existing materials for pelvic reconstruction do not meet the clinical requirements for biocompatibility, mechanics and immunological rejection. To address these concerns, urinary bladder decellularized materials (UBDM) was selected due to their good strain-stress resistance. To enhance its biocompatibility, laminin/nidogen was used to modify the UBDM with a mussel-inspired polydopamine coating. We found that the biocompatibility and mechanical properties of laminin/nidogen-Dopamine-UBDM were significantly enhanced and that the degradation rate of laminin/nidogen-Dopamine-UBDM was markedly reduced. Moreover, the expression of CD31 in the laminin/nidogen-Dopamine-UBDM group was higher than that in the normal UBDM group. The laminin/nidogen-Dopamine-UBDM treatment mainly guided M2 type macrophages and led to an inflammatory response. These results indicate that laminin/nidogen adsorbed urinary bladder decellularized materials are promising for use in pelvic reconstruction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...