RESUMEN
The occurrence of type 2 diabetes mellitus (T2DM), a worldwide chronic disease, is mainly caused by insufficient insulin production and places a huge burden on the health system. Gastrodia elata Blume (GE), a food of medicine-food homology, has been reported to have the ability to inhibit glycosidase activity, indicating its potential in the treatment of diabetes. However, the main pharmacological components of GE for the treatment of T2DM have not been fully clarified. Therefore, this study aims to clarify the pharmacological components changes of GE with different drying methods and the treatment of T2DM using HPLC, network pharmacology, molecular docking and experimental evaluations. The results showed that the GE samples processed by the steam-lyophilized method possessed the highest total content of the six marker components and the strongest antioxidant and α-glucosidase inhibitory abilities. Meanwhile, the six marker compounds had a total of 238 T2DM-related gene targets. Notably, these active compounds have good affinity for key gene targets associated with T2DM signaling pathways. In conclusion, this study revealed that different drying methods of GE affect the content of its major active compounds, antioxidant capacity, α-glucosidase inhibitory capacity and potential pharmacological effects on T2DM, indicating that it is a potential treatment of T2DM.
Asunto(s)
Diabetes Mellitus Tipo 2 , Gastrodia , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Gastrodia/química , Cromatografía Líquida de Alta Presión/métodos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Farmacología en Red , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/química , Humanos , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/químicaRESUMEN
The chemical constituents in the ethanol extract of Viburnum utile were isolated by column chromatography with D101 macroporous resin, silica gel, and Sephadex LH-20. Their structures were identified by spectroscopic techniques such as NMR and MS. All the compounds were evaluated for the inhibitory activities against α-glucosidase. Sixteen compounds were obtained and identified as viburnumide A(1), vitamin E(2), α-amyrin(3), α-tocoquinone(4), narjatamanin B(5), ethyl caffeate(6), naringenin(7), apigenin(8), ethyl ß-D-ribo-hex-3-ulopyranoside(9), trans-p-hydroxycinnamic acid(10), amentoflavone(11), apigenin-7-O-ß-D-glucoside(12), luteolin-7-O-ß-D-glucoside(13), henryoside(14), ursolic acid(15), and 2α-hydroxy-oleanolic acid(16). Among them, compound 1 was a new compound, and compounds 2-16 were isolated from V. utile for the first time. The inhibitory activity(IC_(50) of 4.0 µmol·L~(-1)) of compound 11 against α-glucosidase was comparable to that of the positive control acarbose(IC_(50) of 2.3 µmol·L~(-1)).
Asunto(s)
Inhibidores de Glicósido Hidrolasas , Viburnum , alfa-Glucosidasas , Viburnum/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/química , Estructura Molecular , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacologíaRESUMEN
AIMS: The RNA-binding protein LSM7 is essential for RNA splicing, acting as a key component of the spliceosome complex; however, its specific role in breast cancer (BC) has not been extensively investigated. MATERIALS AND METHODS: LSM7 expression in BC samples was evaluated through bioinformatics analysis and immunohistochemistry. The impact of LSM7 on promoting metastatic tumor characteristics was examined using transwell and wound healing assays, as well as an orthotopic xenograft model. Additionally, the involvement of LSM7 in alternative splicing of CD44 was explored via RNA immunoprecipitation and third-generation sequencing. The regulatory role of TCF3 in modulating LSM7 gene expression was further elucidated using luciferase reporter assays and chromatin immunoprecipitation. KEY FINDINGS: Our findings demonstrate that LSM7 was significantly overexpressed in metastatic BC tissues and was associated with poor prognostic outcomes in patients with BC. LSM7 overexpression markedly increased the migratory and invasive capabilities of BC cells in vitro and significantly promoted spontaneous lung metastasis in vivo. Furthermore, RIP-seq analysis revealed that LSM7 binded to CD44 RNA, enhancing the expression of its alternatively spliced isoform CD44s, thereby driving BC metastasis and invasion. Additionally, the transcription factor TCF3 was found to activate LSM7 transcription by directly binding to its promoter. SIGNIFICANCE: In summary, this study highlights the pivotal role of LSM7 in the production of the CD44s isoform and the promotion of breast cancer metastasis. Targeting the TCF3/LSM7/CD44s axis may offer a promising therapeutic strategy for breast cancer treatment.
Asunto(s)
Empalme Alternativo , Neoplasias de la Mama , Receptores de Hialuranos , Proteínas de Unión al ARN , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Empalme Alternativo/genética , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Movimiento Celular/genética , PronósticoRESUMEN
Alzheimer's disease (AD) is a common neurological disease with recognition ability loss symptoms and a major contributor to dementia cases worldwide. Gastrodia elata Bl. (GE), a food of medicine-food homology, has been reported to have a mitigating effect on memory and learning ability decline. However, the effect of GE fermented by Lactobacillus plantarum, Acetobacter pasteurianus, and Saccharomyces (FGE) on alleviating cognitive deficits in AD was not studied. Mice were randomly divided into six groups, control, model, donepezil, low, medium, and high doses of FGE, and D-Galactose/Aluminum chloride (D-Gal/AlCl3) was used to establish an AD-like mouse model. The results indicated that FGE could improve the production of neurotransmitters and relieve oxidative stress damage in AD-like mice, which was evidenced by the declined levels of amyloid-ß (Aß), Tau, P-Tau, acetylcholinesterase (AchE), and malondialdehyde (MDA), and increased acetylcholine (Ach), choline acetyltransferase (ChAT), and superoxide dismutase (SOD) levels in brain tissue. Notably, FGE could enhance the richness of the gut microbiota, especially for beneficial bacteria such as Lachnospira and Lactobacillus. Non-target metabolomics results indicated that FGE could affect neurotransmitter levels by regulating amino acid metabolic pathways to improve AD symptoms. The FGE possessed an ameliorative effect on AD by regulating neurotransmitters, oxidative stress levels, and gut microbiota and could be considered a good candidate for ameliorating AD.
RESUMEN
BACKGROUND: Depression is a common and recurrent neuropsychiatric disorder. Recent studies have shown that the N-methyl-d-aspartate (NMDA) receptor (NMDAR) is involved in the pathophysiology of depression. Previous studies have found that Kaji-ichigoside F1 (KF1) has a protective effect against NMDA-induced neurotoxicity. However, the antidepressant mechanism of KF1 has not been confirmed yet. PURPOSE: In the present study, we aimed to evaluate the rapid antidepressant activity of KF1 and explore the underlying mechanism. STUDY DESIGN: First, we explored the effect of KF1 on NMDA-induced hippocampal neurons and the underlying mechanism. Second, depression was induced in C57BL/6 mice via chronic unpredictable mild stress (CUMS), and the immediate and persistent depression-like behavior was evaluated using the forced swimming test (FST) after a single administration of KF1. Third, the contributions of NMDA signaling to the antidepressant effect of KF1 were investigated using pharmacological interventions. Fourth, CUMS mice were treated with KF1 for 21 days, and then their depression-like behaviors and the underlying mechanism were further explored. METHODS: The FST was used to evaluate immediate and persistent depression-like behavior after a single administration of KF1 with or without NMDA pretreatment. The effect of KF1 on depressive-like behavior was investigated in CUMS mice by treating them with KF1 once daily for 21 days through the sucrose preference test, FST, open field test, and tail suspension test. Then, the effects of KF1 on the morphology and molecular and functional phenotypes of primary neuronal cells and hippocampus of mice were investigated by hematoxylin-eosin staining, Nissl staining, propidium iodide staining, TUNEL staining, Ca2+ imaging, JC-1 staining, ELISA, immunofluorescence analysis, RT-PCR, and Western blot. RESULTS: KF1 could effectively improve cellular viability, reduce apoptosis, inhibit the release of LDH and Ca2+, and increase the mitochondrial membrane potential and the number of dendritic spines numbers in hippocampal neurons. Moreover, behavioral tests showed that KF1 exerted acute and sustained antidepressant-like effects by reducing Glu-levels and ameliorating neuronal damage in the hippocampus. Additionally, in vivo and in vitro experiments revealed that PSD95, Syn1, α-amino-3hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and brain-derived neurotrophic factor (BDNF) were upregulated at the protein level, and BDNF and AMPA were upregulated at the mRNA level. NR1 and NR2A showed the opposite trend. CONCLUSION: These results confirm that KF1 exerts rapid antidepressant effects mainly by activating the AMPA-BDNF-mTOR pathway and inhibiting the NMDAR-CaMKIIα pathway. This study serves as a new reference for discovering rapid antidepressants.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Ratones , Animales , Depresión/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de EnfermedadRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate (CaOx) kidney stones are widely acknowledged as the most prevalent type of urinary stones, with high incidence and recurrence rates. Incarvillea diffusa Royle (ID) is a traditionally used medicinal herb in the Miao Minzu of Guizhou province, China, for treating urolithiasis. However, the active components and the underlying mechanism of its pharmacodynamic effects remain unclear. AIM OF THE STUDY: This study aimed to investigate the potential inhibitory effect of the active component of ID on the formation of CaOx nephrolithiasis and elucidate the underlying mechanism. MATERIALS AND METHODS: In vivo, a CaOx kidney stone model was induced in Sprague-Dawley (SD) rats using an ethylene glycol and ammonium chloride protocol for four weeks. Forty-eight male SD rats were randomly assigned to 6 groups (n = 8): blank group, model group, apocynin group, and low, medium, and high dose of ID's active component (IDW) groups. After three weeks of administration, rat urine, serum, and kidney tissues were collected. Renal tissue damage and crystallization, Ox, BUN, Ca2+, CRE, GSH, MDA, SOD contents, and levels of IL-1ß, IL-18, MCP-1, caspase-1, IL-6, and TNF-α in urine, serum, and kidney tissue were assessed using HE staining and relevant assay kits, respectively. Protein expression of Nrf2, HO-1, p38, p65, and Toll-4 in kidney tissues was quantified via Western blot. The antioxidant capacities of major compounds were evaluated through DPPH, O2·-, and ·OH radical scavenging assays, along with their effects on intracellular ROS production in CaOx-induced HK-2 cells. RESULTS: We found that IDW could significantly reduce the levels of CRE, GSH, MDA, Ox, and BUN, and enhancing SOD activity. Moreover, it could inhibit the secretion of TNF-α, IL-1ß, IL-18, MCP-1, caspase-1, and decreased protein expression of Nrf2, HO-1, p38, p65, and Toll-4 in renal tissue. Three major compounds isolated from IDW exhibited promising antioxidant activities and inhibited intracellular ROS production in CaOx-induced HK-2 cells. CONCLUSIONS: IDW facilitated the excretion of supersaturated Ca2+ and decreased the production of Ox, BUN in SD rat urine, and mitigated renal tissue damage by regulating Nrf2/HO-1 signaling pathway. Importantly, the three major compounds identified as active components of IDW contributed to the inhibition of CaOx nephrolithiasis formation. Overall, IDW holds significant potential for treating CaOx nephrolithiasis.
Asunto(s)
Oxalato de Calcio , Nefrolitiasis , Ratas , Masculino , Animales , Oxalato de Calcio/orina , Especies Reactivas de Oxígeno/metabolismo , Interleucina-18/efectos adversos , Interleucina-18/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/efectos adversos , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , Nefrolitiasis/inducido químicamente , Nefrolitiasis/tratamiento farmacológico , Riñón/metabolismo , Superóxido Dismutasa/metabolismo , Caspasas/metabolismoRESUMEN
With dimethyl sulfoxide (DMSO) as the methylthio source, a KF-catalyzed strategy was employed for the direct thiomethylation of carboxylic acids with DMSO for the preparation of methyl thioesters. In this process, a wide range of methyl thioesters were obtained in moderate to excellent yields. This novel strategy features the first use of DMSO as a methylthiolating agent for the construction of methyl thioesters, transition metal-free conditions, inexpensive reagents, easy workup, broad substrate scope and sustainability. Additionally, this procedure can be readily scaled up to a gram scale.
RESUMEN
Cinnamigones A-C, three undescribed highly oxidized guaiane-type sesquiterpenes were isolated from the fruits of Cinnamomum migao. Cinnamigone A (1), structurally artemisinin-like, is a natural 1,2,4-trioxane caged endoperoxide with an unprecedented tetracyclic 6/6/7/5 ring system. Compounds 2-3 are classic guaiane sesquiterpene featuring different epoxy units. Guaiol (4) is considered to be the precursor of 1-3 in the biosynthesis pathway hypothesis. The planar structures and configurations of cinnamigones A-C were elucidated by spectral analysis, HRESIMS, X-ray crystallography and ECD calculations. Evaluation of the neuroprotective activity of 1-3 on N-methyl-á´ aspartate (NMDA) toxicity was demonstrated that compounds 1-2 exhibited moderate neuroprotective activity against NMDA-induced neurotoxicity.
Asunto(s)
Cinnamomum , Sesquiterpenos , Estructura Molecular , N-Metilaspartato , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos de Guayano/farmacologíaRESUMEN
Sorghum (Sorghum bicolor L.) is the fifth largest crop in the world and has potential health benefits, but vast quantities of sorghum roots are discarded after harvest. Based on the previous antiplatelet aggregation for this species, two new multi-substituted 3H-indole alkaloids sorghumine A (1) and sorghumine B (2), together with 14 known compounds (3-16), were found from the water extract of sorghum roots. Compounds 1-2 were identified by analyzing their spectroscopic data and physic and chemical properties, and the absolute configuration was further determined by electronic circular dichroism (ECD) analysis and calculations. 1-2, 4, 6-8 and 13-15 showed significant inhibition of platelet aggregation induced by adenosine diphosphate. 2-4, 6-9 and 11 showed significant inhibition of platelet aggregation induced by collagen. 4-6, 8, 10-11 and 16 showed significant inhibition on platelet aggregation induced by thrombin. Furthermore, molecular docking showed that active compounds can bind to P2Y12 and COX-1 receptors in platelet.
Asunto(s)
Sorghum , Simulación del Acoplamiento Molecular , Plaquetas , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacologíaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume (GE) is a Chinese medicinal herb commonly used to treat central nervous system-related diseases, including headaches, dizziness, epilepsy, numbness of the limbs and depression. AIM OF THE STUDY: Microbial-based fermentation has been successfully used to increase the extract efficiency of medicinal herbs in recent years. However, no study has hitherto explored the anti-depressant-like effect of GE processed by microorganisms. Herein, this subject aimed to clarify the anti-depressant-like effect of fermented Gastrodia elata Bl. (FGE) and its active chemical constituents. MATERIALS AND METHODS: The chronic unpredictable mild stress (CUMS) model, a well-established animal model of depression, was induced in Kunming (KM) mice. The mice were administrated with FGE for 3 weeks. The sucrose preference test (SPT), open field test (OFT) and tail suspension test (TST) were conducted. Moreover, the levels of serotonin (5-HT) and dopamine (DA) in brain tissue homogenates, the concentration of Ca2+ and the activity of MAO in serum, H&E and Nissl staining in the hippocampus, and the hippocampus protein expressions of BDNF, NMDAR1, NMDAR2A and NMDAR2B relevant to depression were detected. Furthermore, chemical constituents of FGE were further isolated, and the protective activity of the obtained compounds against NMDA-induced PC-12 cell damage was assessed. RESULTS: FGE could alleviate the depression state in CUMS-induced mice and reduce apoptosis of neuronal cells in the hippocampus. Furthermore, FGE could improve the contents of 5-HT, DA and decrease the concentration of Ca2+ and MAO activity in brain tissue and serum compared with the control group. It could reverse the decreased expression of BDNF, NMDAR2A and NMDAR2B and increase NMDAR1 protein expression. Investigation of the active constituents from FGE yielded two new compounds, (4-(((4-ethoxybenzyl) oxy)methyl)-phenol 1 and 3-((4-hydroxy benzyl)oxy)propane-1,2-diol) 2, with twelve known compounds (3-14). The compounds (3-((4-hydroxybenzyl)oxy)propane-1,2-diol 2, 4, 4'-dihydroxyd iphenyl methane 3, and bungein A 4) protected against NMDA-induced PC-12 cells damage. CONCLUSION: This study demonstrated that FGE could improve the depressive behavior of CUMS-induced mice and exert a protective effect on nerve cells in the brain. Importantly, compounds 2-4 are the active components of FGE. Overall, the above findings suggest that FGE has huge prospects for application in treating depression-related diseases.
Asunto(s)
Gastrodia , Animales , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Gastrodia/química , Monoaminooxidasa/metabolismo , N-Metilaspartato , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Propano/farmacología , Serotonina/metabolismo , Estrés Psicológico/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismoRESUMEN
Kaji-ichigoside F1 (KF1), a natural oleanane-type triterpenoid saponin, is the main active constituent from Rosa roxburghii. In the southwest regions of China, particularly in Guizhou Province, this plant was used as a Miao ethnic medicine to prevent and treat dyspepsia, dysentery, hypoimmunity, and neurasthenia. In the present study, the neuroprotective effect of KF1 was evaluated against N-methyl-D-aspartate (NMDA)-induced neurotoxicity in vivo and in vitro. An NMDA-induced PC12 cell neurotoxicity assay showed that KF1 effectively improved cellular viability, inhibited the release of lactate dehydrogenase (LDH), and reduced cell apoptosis. Furthermore, KF1-treated NMDA-induced excitotoxicity mice displayed a remarkable capacity for improving spatial learning memory in the Y-maze and Morris water maze tests. In addition, KF1 increased the levels of the neurotransmitters 5-hydroxytryptamine, dopamine, and monoamine oxidase and reduced the calcium ion concentration in the hippocampus of mice. Hematoxylin and eosin and Nissl staining indicated that KF1 effectively reduced the impairment of neurons. Furthermore, Western blot assays showed that KF1 decreased NMDAR1 expression. In contrast, the NMDAR2B (NR2B), glutamate receptor (AMPA), TrkB, protein kinase B (AKT), mammalian target of rapamycin (mTOR), PSD95, and synapsin 1 were upregulated in NMDA-induced PC12 cells and an animal model. These results suggest that KF1 has a remarkable protective effect against NMDA-induced neurotoxicity, which is directly related to the regulation of the NMDA receptor and the activation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and BDNF/AKT/mTOR signaling pathways.
Asunto(s)
Fármacos Neuroprotectores , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Ratas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , N-Metilaspartato/metabolismo , Neuroprotección , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
BACKGROUND: Spiropachysine A is the extracted compound of traditional Chinese ethnic medicine Pachysandra axillaries Franch. var. styiosa (Dunn) M. Cheng. Spiropachysine A is the primary active steroidal alkaloids (SAs) widely used to facilitate blood circulation and relieve pain and inflammation. Few previous studies have investigated the anti-cancer activity of Spiropachysine A to treat hepatocellular carcinoma (HCC), and its molecular mechanism remains unknown. PURPOSE: This study aims to investigate the anti-cancer activity of Spiropachysine A and the underlying mechanisms by inducing methuosis in vitro and in vivo. METHODS: Here, the activity of Spiropachysine A against cancer was evaluated by the experiments with MHCC-97H cells and the xenografted mice model. The cell proliferation was examined using MTT assay, and cell morphological characteristics were observed by microscope cellular imaging. The effects of autophagy, paraptosis, and oncosis on cytoplasmic vacuolisation were detected using immunofluorescence staining, transmission electron microscopy (TEM) and western blotting (WB). The cell cycle distribution and apoptosis were analysed by flow cytometry. Hematoxylin eosin (H & E) staining was used to observe the pathological changes of the tissues. RESULTS: The in vitro and in vivo results indicated that Spiropachysine A could inhibit HCC cells proliferation (IC50 = 2.39 ± 0.21 µM against MHCC-97H cells) and tumor growth (TGI = 32.81 ± 0.23% at 25 mg/kg and 50.32 ± 0.26% at 50 mg/kg). The morphological changes of the treated cells showed that cell proliferation inhibition caused by Spiropachysine A was associated with numerous cytoplasmic vacuolization. Mechanistically, Spiropachysine A-induced methuosis rather than autophagy or arapaptic because the autophagy flux was blocked, leading to the increased LC3-II/I value and an accumulation of selective autophagy substrate p62. And, there was no activation of the regulatory parapaptic MAPK pathway. Additionally, the TEM and Lucifer yellow (LY) accumulation data confirmed that Spiropachysine A significantly triggered methuosis instead of oncosis. Further, the study indicated that the anti-proliferative activity of Spiropachysine A was independent of PCD since no alterations in apoptosis and cell cycle arrest-related proteins were observed after Spiropachysine A treatment. Impressively, the increased expression of Rac1 was observed in Spiropachysine A-treated MHCC-97H cells and its xenograft tumours, confirming that Spiropachysine A inhibited cell proliferation and induced methuosis through Ras/Rac1 signal pathways. CONCLUSIONS: Spiropachysine A was collectively identified as a novel methuosis inducer that suppresses HCC in vitro and in vivo. The underlying mechanisms might be involved in the Ras/Rac1 pathway. Such data predict that Spiropachysine A is a promising candidate for developing novel chemotherapeutic agents as a methuosis inducer for cancer therapy.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Apoptosis , Autofagia , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Hepáticas/patología , Ratones , NecrosisRESUMEN
A range of novel 1-phenyl-benzopyrrolizidin-3-one derivatives were synthesized and evaluated for neuroprotective effects against N-methyl-á´ -aspartate (NMDA)-induced injury in PC12 cells. Interestingly, derivatives that 1-phenyl moiety bearing electron-donating group, especially benzyloxy, and the trans-forms exhibited better protective activity against NMDA-induced neurotoxicity. Compound 11 m demonstrated the best neuroprotective potency and shown a dose-dependent prevention. The increased intracellular calcium (Ca2+) influx caused by NMDA in PC12 cells was reversed in the case of compound 11 m pretreatment at 15 µM. These results suggested that the synthesized 1-phenyl-benzopyrrolizidin-3-one derivatives exerted neuroprotective effect on NMDA-induced excitotoxicity in PC12 cells associated with inhibition of Ca2+ overload and can be further optimized for the development of neuroprotective agents.
Asunto(s)
N-Metilaspartato , Fármacos Neuroprotectores , Animales , Calcio/metabolismo , N-Metilaspartato/toxicidad , Fármacos Neuroprotectores/farmacología , Células PC12 , Ratas , Receptores de N-Metil-D-AspartatoRESUMEN
INTRODUCTION: Heterotopic ossification of tendons and ligaments is a painful and debilitating disease with no effective treatment. Although aging has been reported to be correlated with the occurrence and development of this disease, the mechanism remains unknown. MATERIALS AND METHODS: In the present study, we generated Bmal1-/- mice, which disrupted the circadian clock and displayed premature aging, as an aging model to explore the role of Bmal1 in TGF-beta (ß)/BMP signaling in progressive heterotopic ossification of tendons and ligaments with aging. RESULTS: We first confirmed that BMAL1 expression is downregulated in human fibroblasts from ossification of the posterior longitudinal ligament using online datasets. Bmal1 deficiency in mice caused significantly progressive heterotopic ossification with aging starting at week 6, notably in the Achilles tendons and posterior longitudinal ligaments. Ossification of the Achilles tendons was accompanied by progressive motor dysfunction of the ankle joint. Histology and immunostaining showed markedly increased endochondral ossification in the posterior longitudinal ligaments and Achilles tendons of Bmal1-/- mice. Ligament-derived Bmal1-/- fibroblasts showed an osteoblast-like phenotype, upregulated osteogenic and chondrogenic markers, and activated TGFß/BMP signaling, which was enhanced by TGFß1 stimulation. Furthermore, Bmal1-/- mouse embryonic fibroblasts had a stronger potential for osteogenic differentiation with activation of TGFß/BMP signaling. CONCLUSIONS: These findings demonstrated that Bmal1 negatively regulates endochondral ossification in heterotopic ossification of tendons and ligaments with aging via TGFß/BMP signaling, thereby identifying a new regulatory mechanism in age-related heterotopic ossification of tendons and ligaments.
Asunto(s)
Tendón Calcáneo , Osificación Heterotópica , Factores de Transcripción ARNTL/genética , Envejecimiento , Animales , Fibroblastos , Ratones , Osificación Heterotópica/genética , Osteogénesis , Factor de Crecimiento Transformador betaRESUMEN
Rationale: Resistance to androgen-deprivation therapy (ADT) associated with metastatic progression remains a challenging clinical task in prostate cancer (PCa) treatment. Current targeted therapies for castration-resistant prostate cancer (CRPC) are not durable. The exact molecular mechanisms mediating resistance to castration therapy that lead to CRPC progression remain obscure. Methods: The expression of MYB proto-oncogene like 2 (MYBL2) was evaluated in PCa samples. The effect of MYBL2 on the response to ADT was determined by in vitro and in vivo experiments. The survival of patients with PCa was analyzed using clinical specimens (n = 132) and data from The Cancer Genome Atlas (n = 450). The mechanistic model of MYBL2 in regulating gene expression was further detected by subcellular fractionation, western blotting, quantitative real-time PCR, chromatin immunoprecipitation, and luciferase reporter assays. Results: MYBL2 expression was significantly upregulated in CRPC tissues and cell lines. Overexpression of MYBL2 could facilitate castration-resistant growth and metastatic capacity in androgen-dependent PCa cells by promoting YAP1 transcriptional activity via modulating the activity of the Rho GTPases RhoA and LATS1 kinase. Importantly, targeting MYBL2, or treatment with either the YAP/TAZ inhibitor Verteporfin or the RhoA inhibitor Simvastatin, reversed the resistance to ADT and blocked bone metastasis in CRPC cells. Finally, high MYBL2 levels were positively associated with TNM stage, total PSA level, and Gleason score and predicted a higher risk of metastatic relapse and poor prognosis in patients with PCa. Conclusions: Our results reveal a novel molecular mechanism conferring resistance to ADT and provide a strong rationale for potential therapeutic strategies against CRPC.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Antagonistas de Andrógenos/farmacología , Castración/métodos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Vía de Señalización Hippo , Humanos , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Células PC-3 , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Proto-Oncogenes Mas , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacosRESUMEN
In this work, 26 methylated acylphloroglucinol meroterpenoids with diverse skeletons, including 18 new ones (bellumones A-R, 1-18), were identified from the flowers of Hypericum bellum. Their structures including absolute configurations were elucidated by detailed spectroscopic data, calculated electronic circular dichroism (ECD), and X-ray diffraction (XRD). Through methylation at C-5, prenylation with different chain lengths of the acylphloroglucinol-derived core, along with different types of secondary cyclization, type A bicyclic polyprenylated acylphloroglucinols (BPAPs) (1-5 and 19-24) and dearomatized isoprenylated acylphloroglucinols (DIAPs) (6-18 and 25-26) were obtained. The significant results of anti-inflammatory, antioxidant, and anti-nonalcoholic steatohepatitis (anti-NASH) activities suggest its usefulness in daily health care.
Asunto(s)
Antiinflamatorios/química , Antioxidantes/química , Hypericum/química , Floroglucinol/química , Terpenos/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Flores/química , Humanos , Estructura Molecular , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Floroglucinol/aislamiento & purificación , Floroglucinol/farmacología , Terpenos/química , Terpenos/aislamiento & purificaciónRESUMEN
Background: Management of patients with prostate cancer and bone metastatic disease remains a major clinical challenge. Loss or mutation of p53 has been identified to be involved in the tumor progression and metastasis. Nevertheless, direct evidence of a specific role for wild-type p53 (wt-p53) in bone metastasis and the mechanism by which this function is mediated in prostate cancer remain obscure. Methods: The expression and protein levels of wt-53, AIP4, and CXCR4 in prostate cancer cells and clinical specimens were assessed by real-time PCR, immunohistochemistry and western blot analysis. The role of wt-p53 in suppressing aggressive and metastatic tumor phenotypes was assessed using in vitro transwell chemotaxis, wound healing, and competitive colocalization assays. Furthermore, whether p53 deletion facilitates prostate cancer bone-metastatic capacity was explored using an in vivo bone-metastatic model. The mechanistic model of wt-p53 in regulating gene expression was further explored by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Results: Our findings revealed that wt-p53 suppressed the prostate cancer cell migration rate, chemotaxis and attachment toward the osteoblasts in vitro. The bone-metastatic model showed that deletion of wt-p53 remarkably increased prostate cancer bone-metastatic capacity in vivo. Mechanistically, wt-p53 could induce the ligand-induced degradation of the chemokine receptor CXCR4 by transcriptionally upregulating the expression of ubiquitin ligase AIP4. Treatment with the CXCR4 inhibitor AMD3100 or transduction of the AIP4 plasmid abrogated the pro-bone metastasis effects of TP53 deletion. Conclusion: Wt-p53 suppresses the metastasis of prostate cancer cells to bones by regulating the CXCR4/CXCL12 activity in the tumor cells/bone marrow microenvironment interactions. Our findings suggest that targeting the wt-p53/AIP4/CXCR4 axis might be a promising therapeutic strategy to manage prostate cancer bone metastasis.