Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38705401

RESUMEN

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Flavonas , Potencial de la Membrana Mitocondrial , Miocitos Cardíacos , Ácido Palmítico , Proteínas Proto-Oncogénicas c-akt , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ácido Palmítico/toxicidad , Ácido Palmítico/farmacología , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas , Línea Celular , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Flavonas/farmacología , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Cryobiology ; 59(1): 54-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19394324

RESUMEN

The potential subcellular consequence of chilling on porcine germinal vesicle (GV) stage oocytes was examined. Prior to in vitro maturation (IVM), Cumulus-oocyte complexes (COCs) freshly collected from antral follicles (3-6mm in diameter) were evenly divided into four groups and immediately incubated in PVA-TL-HEPES medium at the temperature of 39 degrees C (control group), 23 degrees C (room temperature), 15 degrees C and 10 degrees C for 10min, respectively. Following 42h of IVM at 39 degrees C, the survival rates were examined. There was no significant difference between the survival rate of 23 degrees C chilled group and control group (77.92 and 91.89%), but the survival rate of 15 and 10 degrees C chilled group were significantly decreased (46.34 and 4.81%, P<0.01). A further experiment on 15 degrees C group showed that most oocytes died from 2 to 4h of IVM. In order to investigate the effects of chilling on oocytes at the subcellular level, the control and 15 degrees C chilled group COCs fixed at different time points of the IVM cultures (2, 2.5, 3, 3.5 and 4h of IVM) were prepared for transmission electron microscope (TEM) observation. As the result, compared with the control group, there were two significant changes in the ultrastructural morphology of 15 degrees C treatment group: (1) dramatic reduction of heterogeneous lipid, (2) disorganized mitochondria-endoplasmic reticulum-lipid vesicles (M-E-L) combination. These results indicate that 15 degrees C is a critical chilling temperature for porcine GV stage oocyte and the alteration of cellular chemical composition and the destruction of M-E-L combination maybe responsible for chilling injury of porcine oocyte at this stage.


Asunto(s)
Células del Cúmulo/citología , Oocitos/citología , Animales , Supervivencia Celular , Frío , Crioprotectores/farmacología , Femenino , Lípidos/química , Microscopía Electrónica de Transmisión/métodos , Oocitos/metabolismo , Oocitos/ultraestructura , Porcinos , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...