Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Sci ; 19(3): 994-1006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778116

RESUMEN

Cardiac fibrosis is a common pathological cardiac remodeling in a variety of heart diseases, characterized by the activation of cardiac fibroblasts. Our previous study uncovered that promyelocytic leukemia protein (PML)-associated SUMO processes is a new regulator of cardiac hypertrophy and heart failure. The present study aimed to explore the role of PML in cardiac fibroblasts activation. Here we found that PML is significantly upregulated in cardiac fibrotic tissue and activated cardiac fibroblasts treated with transforming growth factor-ß1 (TGF-ß1). Gain- and loss-of-function experiments showed that PML impacted cardiac fibroblasts activation after TGF-ß1 treatment. Further study demonstrated that p53 acts as the transcriptional regulator of PML, and participated in TGF-ß1 induced the increase of PML expression and PML nuclear bodies (PML-NBs) formation. Knockdown or pharmacological inhibition of p53 produced inhibitory effects on the activation of cardiac fibroblasts. We further found that PML also may stabilize p53 through inhibiting its ubiquitin-mediated proteasomal degradation in cardiac fibroblasts. Collectively, this study suggests that PML crosstalk with p53 regulates cardiac fibroblasts activation, which provides a novel therapeutic strategy for cardiac fibrosis.


Asunto(s)
Proteína de la Leucemia Promielocítica , Factor de Crecimiento Transformador beta1 , Proteína p53 Supresora de Tumor , Humanos , Fibroblastos/metabolismo , Fibrosis , Corazón , Factor de Crecimiento Transformador beta1/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo
2.
J Adv Res ; 39: 275-289, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35777912

RESUMEN

INTRODUCTION: The principal voltage-gated Na+ channel, NaV1.5 governs heart excitability and conduction. NaV1.5 dysregulation is responsible for ventricular arrhythmias and subsequent sudden cardiac death (SCD) in post-infarct hearts. The transcription factor Meis1 performs a significant role in determining differentiation fate and regenerative capability of cardiomyocytes. However, the functions of Meis1 in ischemic arrhythmias following myocardial infarction (MI) are still largely undefined. OBJECTIVES: Here we aimed to study whether Meis1 could act as a key regulator to mediate cardiac Na+ channel and its underlying mechanisms. METHODS: Heart-specific Meis1 overexpression was established by AAV9 virus injection in C57BL/6 mice. The QRS duration, the incidence of ventricular arrhythmias and cardiac conduction velocity were evaluated by ECG, programmed electrical stimulation and optical mapping techniques respectively. The conventional patch clamp technique was performed to explore the INa characteristics of isolated mouse ventricular myocytes. In vitro, Meis1 was also overexpressed in hypoxic-treated neonatal cardiomyocytes. The analysis of immunoblotting and immunofluorescence were used to detect the changes in the expression of NaV1.5 in each group. RESULTS: We found that forced expression of Meis1 rescued the prolongation of QRS complex, produced anti-arrhythmic activity and improved epicardial conduction velocity in infarcted mouse hearts. In terms of mechanisms, cardiac electrophysiological changes of MI mice can be ameliorated by the recovery of Meis1, which is characterized by the restoration of INa current density and NaV1.5 expression level of cardiomyocytes in the marginal zone of MI mouse hearts. Furthermore, in vitro studies showed that Meis1 was also able to rescue hypoxia-induced decreased expression and dysfunction of NaV1.5 in ventricular myocytes. We further revealed that E3 ubiquitin ligase CDC20 led to the ubiquitination and degradation of Meis1, which blocked the transcriptional regulation of SCN5A by Meis1 and ultimately led to the electrophysiological remodeling in ischemic-hypoxic cardiomyocytes. CONCLUSION: CDC20 mediates ubiquitination of Meis1 to govern the transcription of SCN5A and cardiac electrical conduction in mouse cardiomyocytes. This finding uncovers a new mechanism of NaV1.5 dysregulation in infarcted heart, and provides new therapeutic strategies for malignant arrhythmias and sudden cardiac death following MI.


Asunto(s)
Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Infarto del Miocardio , Factores de Transcripción , Animales , Arritmias Cardíacas , Muerte Súbita Cardíaca , Ratones , Ratones Endogámicos C57BL , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo
3.
Front Pharmacol ; 12: 715466, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630093

RESUMEN

Infarcted myocardium is predisposed to cause lethal ventricular arrhythmias that remain the main cause of death in patients suffering myocardial ischemia. Liver-derived fibroblast growth factor 21 (FGF21) is an endocrine regulator, which exerts metabolic actions by favoring glucose and lipids metabolism. Emerging evidence has shown a beneficial effect of FGF21 on cardiovascular diseases, but the role of FGF21 on ventricular arrhythmias following myocardial infarction (MI) in humans has never been addressed. This study was conducted to investigate the pharmacological effects of FGF21 on cardiomyocytes after MI in humans. Patients with arrhythmia in acute MI and healthy volunteers were enrolled in this study. Serum samples were collected from these subjects on day 1 and days 7-10 after the onset of MI for measuring FGF21 levels using ELISA. Here, we found that the serum level of FGF21 was significantly increased on day 1 after the onset of MI and it returned to normal on days 7-10, relative to the Control samples. In order to clarify the regulation of FGF21 on arrhythmia, two kinds of arrhythmia animal models were established in this study, including ischemic arrhythmia model (MI rat model) and nonischemic arrhythmia model (ouabain-induced guinea pig arrhythmia model). The results showed that the incidence and duration time of ischemic arrhythmias in rhbFGF21-treated MI rats were significantly reduced at different time point after MI compared with normal saline-treated MI rats. Moreover, the onset of the first ventricular arrhythmias was delayed and the numbers of VF and maintenance were attenuated by FGF21 compared to the rhbFGF21-untreated group in the ouabain model. Consistently, in vitro study also demonstrated that FGF21 administration was able to shorten action potential duration (APD) in hydrogen peroxide-treated AC16 cells. Mechanically, FGF21 can ameliorate the electrophysiological function of AC16 cells, which is characterized by rescuing the expression and dysfunction of cardiac sodium current (I Na) and inward rectifier potassium (I k1) in AC16 cells induced by hydrogen peroxide. Moreover, the restorative effect of FGF21 on NaV1.5 and Kir2.1 was eliminated when FGF receptors were inhibited. Collectively, FGF21 has the potential role of ameliorating transmembrane ion channels remodeling through the NaV1.5/Kir2.1 pathway by FGF receptors and thus reducing life-threatening postinfarcted arrhythmias, which provides new strategies for antiarrhythmic therapy in clinics.

4.
Eur J Pharmacol ; 910: 174470, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34478691

RESUMEN

Myocardial fibrosis in post-myocardial infarction is a self-healing process of the myocardium, making ventricular remodelling difficult to reverse and develop continuously. Fibroblast growth factor 21 (FGF21) plays an essential role in cardiovascular and metabolic diseases. However, the effect and mechanism of FGF21 action on cardiac inflammation and fibrosis caused by myocardial injury have rarely been reported. Adult male Sprague-Dawley rats administered with or without recombinant human basic FGF21 (rhbFGF21) were assessed using echocardiography and haematoxylin-eosin and Masson's trichrome staining to determine the cardiac function and cardiac inflammation and fibrosis levels. FGF21 might improve cardiac remodelling, as characterised by a decrease in the expression of a series of inflammatory and fibrosis-related factors. Moreover, when FGF receptors (FGFRs) were blocked, the effects of FGF21 disappeared. Mechanistically, we found that oxidative stress induced the downregulation of early growth response protein 1 (EGR1), which contributed to inflammatory factors and fibrosis reduction in cardiomyocytes treated with H2O2. Collectively, FGF21 effectively suppressed the inflammation and fibrosis in post-infarcted hearts by regulating FGFR-EGR1.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Crecimiento de Fibroblastos/uso terapéutico , Fibrosis , Corazón/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Miocardio/inmunología , Miocitos Cardíacos , Cultivo Primario de Células , Ratas , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...