Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Nanomedicine ; 19: 3259-3273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601347

RESUMEN

Purpose: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease involving synovial inflammation and joint destruction. Although therapeutic drugs for RA have some efficacy, they usually cause severe side effects and are expensive. RA is characterized by synovial hyperplasia, intra-articular hypoxia, upregulated expression of matrix metalloproteinases, and excessive accumulation of reactive oxygen species. The adverse microenvironment further aggravates activated macrophage infiltration. Therefore, controlling the microenvironment of diseased tissues and targeting the activated macrophages have become new therapeutic targets in RA patients. Methods: Here, microenvironment-targeting micelles (PVGLIG-MTX-Que-Ms) were synthesized using the thin film hydration method. In the inflammatory microenvironment, PVGLIG was cleaved by the highly expressed MMP-2, PEG5000 was eliminated, MTX was exposed, macrophage activation was targeted, and Que enrichment was enhanced. The cytotoxicity, targeting, antioxidant, and anti-inflammatory properties of drug-loaded micelles were tested in vitro. The drug-loaded micelles were used to treat CIA rats. In vivo targeting, expression of serum inflammatory factors, immunohistochemistry of the articular cartilage, and changes in immunofluorescence staining were observed. Results: The developed micelles had a particle size of (89.62 ±1.33) nm and a zeta potential of (-4.9 ±0.53) mV. The IC50 value of PVGLIG-MTX-Que-Ms (185.90 ±6.98) µmol/L was significantly lower than that of free Que (141.10 ±6.39) µmol/L. The synthesized micelles exhibited slow-release properties, low cytotoxicity, strong targeting abilities, and significant anti-inflammatory effects in vitro. In vivo, the drug-loaded micelles accumulated at the joint site for a long time. PVGLIG-MTX-Que-Ms significantly reduced joint swelling, improved bone destruction, and decreased the expression of serum inflammatory factors in CIA rats. Conclusion: The smart-targeting micelles PVGLIG-MTX-Que-Ms with strong targeting, anti-inflammatory, cartilage-protective, and other multiple positive effects are a promising new tool for RA treatment.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Humanos , Ratas , Animales , Metotrexato/química , Micelas , Quercetina/farmacología , Quercetina/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Artritis Experimental/tratamiento farmacológico
2.
Heliyon ; 10(2): e24371, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298695

RESUMEN

Purpose: The aim of this study is to investigate a new method that combines radiological and pathological breast cancer information to predict discrepancies in pathological responses for individualized treatment planning. We used baseline multiparametric magnetic resonance imaging and hematoxylin and eosin-stained biopsy slides to extract quantitative feature information and predict the pathological response to neoadjuvant chemotherapy in breast cancer patients. Methods: We retrospectively collected data from breast cancer patients who received neoadjuvant chemotherapy in our hospital from August 2016 to January 2018; multiparametric magnetic resonance imaging (contrast-enhanced T1-weighted imaging and diffusion-weighted imaging) and whole slide image of hematoxylin and eosin-stained biopsy sections were collected. Quantitative imaging features were extracted from the multiparametric magnetic resonance imaging and the whole slide image were used to construct a radiopathomics signature model powered by machine learning methods. Models based on multiparametric magnetic resonance imaging or whole slide image alone were also constructed for comparison and referred to as the radiomics signature and pathomics signature models, respectively. Four modeling methods were used to establish prediction models. Model performances were evaluated using receiver operating characteristic curve analysis and the area under the curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. Results: The radiopathomics signature model had favourable performance for the prediction of pathological complete response in the training set (the best value: area under the curve 0.83, accuracy 0.84, and sensitivity 0.87), and in the test set (the best value: area under the curve 0.91, accuracy 0.90, and sensitivity 0.88). In the test set, the radiopathomics signature model also significantly outperformed the radiomics signature (the best value: area under the curve 0.83, accuracy 0.64, and sensitivity 0.62), pathomics signature (the best value: area under the curve 0.60, accuracy 0.74, and sensitivity 0.62) (p > 0.05). Decision curve analysis and calibration curves confirmed the excellent performance of these prediction models in discrimination, calibration, and clinical usefulness. Conclusions: The results of this study suggest that radiopathomics, the combination of both radiological information regarding the whole tumor and pathological information at the cellular level, could potentially predict discrepancies in pathological response and provide evidence for rational treatment plans.

3.
J Neurosci Res ; 102(2): e25309, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400573

RESUMEN

Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.


Asunto(s)
Sinapsis , Transmisión Sináptica , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Mitocondrias/metabolismo , Plasticidad Neuronal/fisiología , Autofagia
4.
Int J Biol Macromol ; 259(Pt 2): 129067, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163510

RESUMEN

Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Sistema Hipotálamo-Hipofisario/patología , Sistema Hipófiso-Suprarrenal/patología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Transducción de Señal
5.
Phytochem Anal ; 35(1): 146-162, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37731278

RESUMEN

INTRODUCTION: Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES: This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY: Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS: A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-ß-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS: This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos , Quimiometría , Farmacología en Red , Cromatografía de Gases y Espectrometría de Masas
6.
J Ethnopharmacol ; 323: 117585, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38159825

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Some species of Codonopsis (local name in Shanxi: Ludang) have long demonstrated high medicinal and economic value. Radix Codonopsis, the dried root of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. modesta (Nannf.) L.D.Shen (C. pilosula var. modesta), or Codonopsis pilosula subsp. tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), was recorded as a traditional Chinese medicine back in the Qing Dynasty in Ben Cao Cong Xin. Radix Codonopsis, a valuable medicinal herb certified by the Chinese National Geographic Indication, is known for invigorating the spleen, nourishing the lungs, promoting blood circulation, and generating fluid properties. Given that chronic cerebral ischemia (CCI) is often associated with the symptoms of qi and blood deficiencies and fluid depletion, we explored the potential of Codonopsis decoction in the treatment of CCI. STUDY AIMS: We investigated the effects of Codonopsis decoction on cerebral blood flow (CBF) and cognitive function in rats with bilateral carotid artery occlusion after surgery; explored whether Codonopsis decoction alleviates pathological injuries in brain tissue of rats after 2-VO surgery; and assessed the impact of Codonopsis decoction on the expression of chemokines, hypoxia-inducible factors, and inflammatory mediators in rats after 2-VO surgery. MATERIALS AND METHODS: We used a 2-VO rat model to simulate CCI. We used a laser speckle imaging (LSI) system to observe changes in CBF before and after surgery. The goal was to examine variations in CBF at different time points after 2-VO surgery. For 4 weeks, the rats were orally administered Codonopsis decoction at doses of 2.7, 5.4, and 10.8 g/kg/day, or Ginaton at a dose of 43.2 mg/kg/day. To assess the effect of Codonopsis on cerebral hypoperfusion symptoms in rats, we conducted the Morris water maze (MWM), Barnes maze (BM), and forelimb grip strength tests. Additionally, pathological experiments including hematoxylin and eosin, Nissl, and Luxol fast blue staining were conducted. Furthermore, we used western blotting to detect changes in the levels of proteins such as the chemotactic factor CKLF1 and hypoxia-inducible actor 1-alpha (HIF-1α). RESULTS: One week after 2-VO surgery, cerebral arterial blood supply in the rats rapidly reduced to approximately 43.39% ± 3.53% of the preoperative level. Cerebral cortex perfusion reached its nadir within 24 h of surgery, gradually recovering and stabilizing by the fourth week after surgery. An integration of the results from the BM, MWM, and grip strength tests, which assessed cognitive function and forelimb strength in rats after 2-VO surgery, unequivocally revealed that Codonopsis treatment significantly reduced the latency period and increased the number of platform crossings in the MWM test. Ginaton exhibited a comparable effect. Moreover, both Codonopsis and Ginaton decreased the number of errors and the time required to locate the target hole in the BM test. Histopathological staining revealed that Codonopsis and Ginaton could ameliorate pathological damage in rats after CCI and reduce the release of factors such as CKLF1 and HIF-1α. CONCLUSION: Codonopsis decoction exerted its protective effects on CCI rats possibly by modulating the levels of chemokines, hypoxia-inducible factors, and neuroinflammatory mediators.


Asunto(s)
Isquemia Encefálica , Codonopsis , Ratas , Animales , Isquemia Encefálica/tratamiento farmacológico , Cognición , Circulación Cerebrovascular , Quimiocinas , Hipoxia
7.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5871-5880, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114183

RESUMEN

This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1ß, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(ß-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and ß-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in rat serum, increased VEGF and ß-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and ß-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1ß. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing ß-EP levels.


Asunto(s)
Isquemia Encefálica , FN-kappa B , Ratas , Masculino , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6/genética , Péptido Relacionado con Gen de Calcitonina/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Comprimidos
8.
Quant Imaging Med Surg ; 13(10): 6555-6570, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37869299

RESUMEN

Background: Tumor radiotherapy combined with immunotherapy for solid tumors has been proposed, but tumor vascular structure abnormalities and immune microenvironment often affect the therapeutic effect of tumor, and multimodal imaging technology can provide more accurate and comprehensive information in tumor research. The purpose of this study was to evaluate the dynamic monitoring of tumor blood vessels and microenvironment induced by radiotherapy by magnetic resonance/photoacoustic (MR/PA) imaging, and to explore its application value in radiotherapy combined with immunotherapy. Methods: The tumor-bearing mice were randomly allocated into six groups, which received different doses of radiation therapy (2 Gy ×14 or 8 Gy ×3) and anti-programmed death ligand-1 (PD-L1) antibody for two consecutive weeks. MR/PA imaging was used to noninvasively evaluate the response of tumor to different doses of radiotherapy, combined with histopathological techniques to observe the tumor vessels and microenvironment. Results: The inhibitory effect of high-dose radiotherapy on tumors was significantly greater than that of low-dose radiotherapy, with the MR images revealing that the signal intensity decreased significantly (P<0.05). Compared with those in the other groups, the tumor vascular density decreased significantly (P<0.01), and the vascular maturity index increased significantly in the low-dose group (P<0.05). The PA images showed that the deoxyhemoglobin and total hemoglobin levels decreased and the SO2 level increased after radiation treatment (P<0.05). In addition, the high-dose group had an increased number of tumor-infiltrating lymphocytes (CD4+ T and CD8+ T cells) (P<0.01, P<0.05) and natural killer cells (P<0.001) and increased PD-L1 expression in the tumors (P<0.05). The combination of radiotherapy and immunotherapy increased the survival rate of the mice (P<0.05), and a regimen of an 8 Gy dose of radiation combined with immunotherapy inhibited tumor growth and increased the survival rate of the mice to a greater degree than the 2 Gy radiation dose with immunotherapy combination (P=0.002). Conclusions: Differential fractionation radiotherapy doses exert biological effects on tumor vascular and the immune microenvironment, and MR/PA can be used to evaluate tumor vascular remodeling after radiotherapy, which has certain value for the clinical applications of radiotherapy combined with immunotherapy.

9.
Metab Brain Dis ; 38(8): 2627-2644, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37837601

RESUMEN

To elucidate the protective mechanism of lobetyolin on oxygen-glucose deprivation/reperfusion (OGD/R)-induced damage in BV2 microglial cells. The OGD/R model was established using a chemical modeling method to simulate in vivo brain ischemia in lobetyolin-pretreated BV2 cells. The optimum lobetyolin dosage, chemical concentration, and OGD/R modeling duration were screened. The changes in cell morphology were observed, and the levels of immune response-related factors, including tumor necrosis factor-α (TNF-α), interleukin-6, inducible nitric oxide synthase (iNOS), and cluster of differentiation (CD)206, were detected using the enzyme-linked immunosorbent assay. The expression of chemokine-like-factor-1 (CKLF1), hypoxia-inducible factor (HIF)-1α, TNF-α, and CD206, was detected using western blotting. The gene expression of M1 and M2 BV2 phenotype markers was assessed using quantitative polymerase chain reaction (qPCR). The localization of M1 and M2 BV2 markers was detected using immunofluorescence analysis. The results showed that lobetyolin could protect BV2 cells from OGD/R-induced damage. After OGD/R, CKLF1/C-C chemokine receptor type 4 (CCR4) levels increased in BV2 cells, whereas the CKLF1/CCR4 level was decreased due to lobetyolin pretreatment. Additionally, BV2 cells injured with OGD/R tended to be M1 type, but lobetyolin treatment shifted the phenotype of BV2 cells from M1 type to M2 type. Lobetyolin decreased the expression of TNF-α and HIF-1α but increased the expression of transforming growth factor-ß (TGF-ß) in BV2 cells, indicating a dose-effect relationship. The qPCR results showed that lobetyolin decreased the expression of CD16, CD32, and iNOS at the gene level and increased the expression of C-C-chemokine ligand-22 and TGF-ß. The immunofluorescence analysis showed that lobetyolin decreased CD16/CD32 levels and increased CD206 levels. Lobetyolin can protect BV2 cells from OGD/R-induced damage by regulating the phenotypic polarization of BV2 and decreasing inflammatory responses. Additionally, CKLF1/CCR4 may participate in regulating lobetyolin-induced polarization of BV2 cells via the HIF-1α pathway.


Asunto(s)
Oxígeno , Daño por Reperfusión , Humanos , Oxígeno/metabolismo , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Glucosa/metabolismo , Fenotipo , Daño por Reperfusión/metabolismo , Quimiocinas/metabolismo , Reperfusión , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
10.
J Pharm Biomed Anal ; 236: 115693, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37696191

RESUMEN

Fuzi decoction (FZD) is clinically used to treat chronic heart failure (CHF) in China, but the mechanism underlying FZD treatment in CHF remains unclear. Here, we investigated the potential mechanism underlying FZD treatment of CHF in rats. First, the compounds in FZD-containing serum of rats were identified, and 16 S rRNA sequencing and GC-MS-based untargeted metabolomics analysis were then performed. The levels of fecal short-chain fatty acids (SCFAs) were determined and compared, and fecal microbiota transplantation (FMT) was used to verify the role of the gut microbiota. Our results identified 27 in FD-containing serum. FZD increased the Firmicutes-to-Bacteroidetes ratio and the Lactobacillus abundance and affected the ß diversity of the gut microbiota in rats with CHF. Differential species analysis showed that Lactobacillus and Prevotella were biomarkers of FZD treatment of CHF. Untargeted metabolomics analysis revealed that FZD affected valine, leucine and isoleucine biosynthesis; galactose metabolism; and aminoacyl-tRNA biosynthesis in rats with CHF. Furthermore, FZD significantly increased the acetic acid, propionic acid, butyric acid and isopentanoic acid levels in the feces of rats with CHF. Correlation analysis showed that the butyric acid and Lactobacillus levels had the strongest correlation in the control, sham and high-dose FZD (HFZD) groups, and many microbiota components were closely related to differentially abundant metabolites. FMT revealed that the fecal microbiota obtained from the HFZD group changed the heart rate; the brain natriuretic peptide (BNP), acetic acid, propionic acid, butyric acid, and metabolite levels; and the gut microbiota in rats with CHF. In summary, our study revealed that the mechanism of action of FZD in CHF treatment may be related to improvements in the gut microbiota, elevations in the SCFA content and the regulation of valine, leucine, and isoleucine biosynthesis; galactose metabolism; and other metabolic pathways.

11.
Drug Dev Ind Pharm ; 49(2): 189-206, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36971392

RESUMEN

OBJECTIVE: The aim was to develop a nanoscale drug delivery system with enzyme responsive and acid sensitive particle size and intelligent degradation aiming to research the inhibitory effect on breast cancer. SIGNIFICANCE: The delivery system addressed the problems of tissue targeting, cellular internalization, and slow drug release at the target site, which could improve the efficiency of drug delivery and provide a feasible therapeutic approach for breast cancer. METHODS: The acid sensitive functional material DSPE-PEG2000-dyn-PEG-R9 was synthesized by Michael addition reaction. Then, the berberine plus baicalin intelligent micelles were prepared by thin-film hydration. Subsequently, we characterized the physical and chemical properties of berberine plus baicalin intelligent micelles, evaluated its anti-tumor effects in vivo and in vitro. RESULTS: The target molecule was successfully synthesized, and the intelligent micelles showed excellent chemical and physical properties, delayed drug release and high encapsulation efficiency. In vitro and in vivo experiments also confirmed that the intelligent micelles could effectively target tumor sites, penetrate tumor tissues, enrich in tumor cells, inhibit tumor cell proliferation, inhibit tumor cell invasion and migration, and induce tumor cell apoptosis. CONCLUSION: Berberine plus baicalin intelligent micelles have excellent anti-tumor effects and no toxicity to normal tissues, which provides a new potential drug delivery strategy for the treatment of breast cancer.


Asunto(s)
Antineoplásicos , Berberina , Neoplasias de la Mama , Humanos , Femenino , Micelas , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/farmacología , Berberina/farmacología , Berberina/química , Berberina/uso terapéutico , Tamaño de la Partícula , Línea Celular Tumoral , Portadores de Fármacos/química
12.
Molecules ; 28(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677849

RESUMEN

The purpose of this study was to investigate differences in the pharmacodynamic, pharmacokinetic, and kidney distribution between Ligustri Lucidi Fructus (LLF) and wine-steamed Ligustri Lucidi Fructus (WLL) extracts in diabetic nephropathy (DN) rats. The DN rats were induced by high-fat-sugar diet (HFSD)/streptozotocin (STZ) regimen. For pharmacodynamics, the DN rats were treated with LLF and WLL extracts to assess the anti-diabetic nephropathy effects. For pharmacokinetics and kidney distribution, the concentrations of drugs (hydroxytyrosol, salidroside, nuezhenidic acid, oleoside-11-methyl ester, specnuezhenide, 1‴-O-ß-d-glucosylformoside, G13, and oleonuezhenide) were determined. Regarding the pharmacodynamics, LLF and WLL extracts decreased the levels of blood glucose, serum creatinine (SCr), blood urea nitrogen (BUN), and 24-h urinary protein (24-h Upro) in DN rats. Furthermore, LLF and WLL extracts increased the level of high-density lipoprotein cholesterol (HDL-C); decreased the levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C); and reduced levels of pro-inflammatory cytokines (IL-1ß, TNF-α, and IL-6) in DN rats. The anti-diabetic nephropathy effect of the WLL extract was better than that of the LLF extract. Regarding the pharmacokinetic and kidney tissue distribution, there were obvious differences in the eight ingredients between LLF and WLL extracts in DN rats. LLF and WLL extracts had protective effects on DN rats, while the WLL extract was better than the LLF extract regarding anti-diabetic nephropathy effects. The pharmacokinetic parameters and kidney distribution showed that wine-steaming could affect the absorption and distribution of the eight ingredients. The results provided a reasonable basis for the study of the clinical application and processing mechanism of LLF.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Ligustrum , Extractos Vegetales , Vino , Animales , Ratas , Colesterol , Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Riñón , Extractos Vegetales/farmacología
13.
Neurotox Res ; 40(4): 1070-1085, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35759084

RESUMEN

Heroin is a highly addictive drug that causes axonal damage. Here, manganese-enhanced magnetic resonance imaging (MEMRI) was used to dynamically monitor axonal transport at different stages of heroin addiction. Rat models of heroin addiction (HA) and prolonged heroin addiction (PHA) were established by injecting rats with heroin at different stages. Heroin-induced learning and memory deficits were evaluated in the Morris water maze (MWM), and MEMRI was used to dynamically evaluate axonal transport in the olfactory pathway. The expression of proteins related to axonal structure and function was also assessed by Western blotting. Transmission electron microscopy (TEM) was used to observe ultrastructural changes, and protein levels of neurofilament heavy chain (NF-H) were analyzed by immunofluorescence staining. HA rats, especially PHA rats, exhibited worse spatial learning and memory than control rats. Compared with HA rats and control rats, PHA rats exhibited significantly longer escape latencies, significantly fewer platform-location crossings, and significantly more time in the target quadrant during the MWM test. Mn2+ transport was accelerated in HA rats. PHA rats exhibited severely reduced Mn2+ transport, and the axonal transport rate (ATR) was significantly lower in these rats than in control rats (P < 0.001). The levels of cytoplasmic dynein and kinesin-1 were significantly decreased in the PHA group than in the control group (P < 0.001); additionally, the levels of energy-related proteins, including cytochrome c oxidase (COX) IV and ATP synthase subunit beta (ATPB), were lower in the PHA group (P < 0.001). The brains of heroin-exposed rats displayed an abnormal ultrastructure, with neuronal apoptosis and mitochondrial dysfunction. Heroin exposure decreased the expression of NF-H, as indicated by significantly reduced staining intensities in tissues from HA and PHA rats (P < 0.05). MEMRI detected axonal transport dysfunction caused by long-term repeated exposure to heroin. The main causes of axonal transport impairment may be decreases in the levels of motor proteins and mitochondrial dysfunction. This study shows that MEMRI is a potential tool for visualizing axonal transport in individuals with drug addictions, providing a new way to evaluate addictive encephalopathy.


Asunto(s)
Transporte Axonal , Dependencia de Heroína , Animales , Transporte Axonal/fisiología , Encéfalo/metabolismo , Heroína/metabolismo , Heroína/toxicidad , Dependencia de Heroína/diagnóstico por imagen , Dependencia de Heroína/metabolismo , Dependencia de Heroína/patología , Cinesinas , Imagen por Resonancia Magnética/métodos , Ratas
14.
Oncotarget ; 13: 641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548328

RESUMEN

[This corrects the article DOI: 10.18632/oncotarget.22600.].

15.
Neurotoxicology ; 91: 119-127, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580741

RESUMEN

PURPOSE: The aim of this study was to evaluate the effect of radiation-induced brain injury (RIBI) on axonal transport (AT) and sexual function. METHODS AND MATERIALS: Adult male rats received whole-brain radiation with a total dose of 30 Gy (15 Gy with 2 fractions) to build a RIBI model. Foraging behavior and sexual function were assessed, and MRI was performed 8 weeks after brain irradiation. MRI was performed in the early and delayed phases after perfusion of MnCl2 into the rat nostril. The levels of motor proteins and proteins involved in energy metabolism and AT were determined by Western blotting. The levels of sex hormones in the blood were measured by ELISA. Ultrastructural analysis was performed with a transmission electron microscope. RESULTS: The foraging ability of rats was reduced after brain irradiation, and the foraging time of the radiation group was longer than that of the control group (P < 0.05). The sexual function of rats in the radiation group was markedly decreased. Compared with control rats, radiation-treated rats showed significant decreases in serum testosterone, FSH, LH, and GnRH levels (P < 0.001). Mn2+ uptake in the olfactory bulb (OB) in the early phase and delayed phase was lower in the radiation group than in the control group (P < 0.05). The AT rate in the lateral olfactory tracts (LOT) and the transsynaptic AT rate were significantly lower in the irradiated rats than in the control rats (P < 0.05). The levels of the motor proteins kinesin-1 and cytoplasmic dynein were significantly decreased in the irradiation group (P < 0.05). The expression of the energy metabolism-related proteins ATPB and COX IV was significantly lower in the irradiated rats than in the control rats (P < 0.05). Apoptosis and synaptic damage were observed after irradiation. CONCLUSION: MRI of the olfactory pathway can be used to assess AT impairment in RIBI models. AT deficits secondary to radiation damage are the result of multiple factors, including declines in motor protein levels, neuronal apoptosis, synaptic damage and energy metabolism dysfunction. Cranial irradiation-induced sexual dysfunction was associated with decreased sex hormone levels secondary to hypothalamic-pituitary-gonadal axis injury.


Asunto(s)
Transporte Axonal , Traumatismos por Radiación , Animales , Encéfalo/metabolismo , Irradiación Craneana , Hormona Liberadora de Gonadotropina/metabolismo , Imagen por Resonancia Magnética , Masculino , Vías Olfatorias/metabolismo , Traumatismos por Radiación/metabolismo , Ratas
16.
Quant Imaging Med Surg ; 11(7): 2968-2979, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34249627

RESUMEN

BACKGROUND: It remains a challenge to distinguish whether the damaged intestine is viable in treating acute mesenteric ischemia. In this study, photoacoustic imaging (PAI) was used to observe intestinal tissue viability after ischemia and reperfusion injury in rats. METHODS: An in vivo study was conducted using forty male SD rats, which were randomly divided into a sham-operated (SO) group, a 1 h ischemia group, a 2 h ischemia group, and an ischemia-reperfusion (I/R) group with 10 rats in each group. In the ischemia group, the superior mesenteric artery (SMA) was isolated and clamped for 1 and 2 h, respectively, and in the I/R group, after ischemia for 1 h, the clamp was removed and reperfused for 1 h. The same time interval was used in the SO group. Immediately after establishing the animal model, a PAI examination was performed, and the small intestine was collected for histopathology. RESULTS: The levels of PAI parameters Hb, HbR, MAP 760, and MAP 840 were increased to different degrees in the ischemia groups, especially in the 2 h ischemia group, compared with the SO group (P<0.05), and with prolongation of the ischemia time, the injury was aggravated. All PAI signal levels except HbO in the I/R group were higher than those in the control group, and the increased range differed, especially in Hb and MAP 840. Using western blot, compared with the SO group, the BAX increased significantly in the 2 h ischemia group (P<0.05), and Caspase-3 in the experimental group was significantly higher than in the SO group (P<0.05). The level of HIF-1α increased in the 2 h ischemia group and I/R group (P<0.05), and TUNEL staining showed that the number of positive apoptotic nuclei in the 2 h ischemia group was significantly higher than in the SO group (P<0.05). Hematoxylin-eosin (HE) staining showed that ischemia for 2 hours was the most serious, with obvious mucosal damage, extensive epithelial injury, and bleeding. CONCLUSIONS: PAI can be used as an effective tool to detect acute intestinal ischemia injury and quantitatively evaluate tissue viability.

17.
Drug Dev Ind Pharm ; 47(1): 100-112, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33295825

RESUMEN

Gastric cancer is one of the leading causes of cancer-related death worldwide with a poor prognosis. Gastric cancer is usually treated with surgery and chemotherapy, accompanied by a high rate of metastasis and recurrence. In this paper, R8 (RRRRRRRR) modified vinorelbine plus schisandrin B liposomes had been successfully constructed for treating gastric cancer. In the liposomes, R8 was used to enhance the intracellular uptake, schisandrin B was incorporated into liposomes for inhibiting tumor cells metastasis, and vinorelbine was encapsulated into liposomes as antitumor drugs. Studies were performed on BGC-823 cells in vitro and were verified in the BGC-823 cell xenografts nude mice in vivo. Results in vitro demonstrated that the targeting liposomes could induce BGC-823 cells apoptosis, inhibit the metastasis of tumor cells, and increase targeting effects to tumor cells. Meanwhile, action mechanism studies showed that the targeting liposomes could down-regulate VEGF, VE-Cad, HIF-1a, PI3K, MMP-2, and FAK to inhibit tumor metastasis. In vivo results exhibited that the targeting liposomes displayed an obvious antitumor efficacy by accumulating selectively in tumor site and induce tumor cell apoptosis. Hence, R8 modified vinorelbine plus schisandrin B liposomes might provide a safe and efficient therapy strategy for gastric cancer.


Asunto(s)
Liposomas , Neoplasias Gástricas , Vinorelbina/química , Animales , Apoptosis , Línea Celular Tumoral , Ciclooctanos/química , Ciclooctanos/farmacología , Lignanos/química , Lignanos/farmacología , Ratones , Ratones Desnudos , Compuestos Policíclicos/química , Compuestos Policíclicos/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Vinorelbina/farmacología
18.
Gastroenterol Res Pract ; 2020: 6062414, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676105

RESUMEN

BACKGROUND: In the unplanned reoperation of colorectal cancer patients, computed tomography (CT) is increasingly utilized to locate postoperative complications and previously unlocalized lesions. The purpose of this study is to explore the application of CT in the mortality and complications of the reoperation of colorectal cancer. Patients and Methods. We performed a retrospective review of collected data from the colorectal surgeries of 90 identified colorectal cancer patients who received an unplanned reoperation from 2010 to 2018. Patients were stratified according to those with preoperative CT imaging (CT group, n = 36) and those without preoperative CT imaging (NCT group, n = 54). Twenty-four statistical indicators of each patient were studied, including their preoperative risk, surgical characteristics, and postoperative outcomes, and satisfaction was evaluated. All data were statistically analysed for predicting postoperative complications by univariate and multivariate logistic regression analyses. RESULTS: Ninety patients received an unplanned reoperation in the study, and 40% (36/90) of these patients underwent preoperative CT examination. Patients' risk factors were similar between CT and NCT groups. Preoperative imaging was more commonly performed for reoperative new anastomosis + ileostomy but less common for reoperative Dixon's procedure. The operative duration of the NCT group was longer (139 vs. 104 min, respectively, P = 0.01). Preoperative NCT examination (OR 1.24; 95% CI = 1.09-1.42; P = 0.01) was an independent predictor of postoperative complications. Importantly, three patients died after an unplanned reoperation for colorectal cancer, which occurred only in the NCT group (5.6% vs. 0.0%, P = 0.01). CONCLUSION: The use of conventional preoperative CT optimizes the choice of the surgical site and the strategy of laparotomy, so as to reduce the length of operation. Preoperative imaging evaluation should be performed for patients undergoing repeat abdominal surgery.

19.
Artif Cells Nanomed Biotechnol ; 48(1): 983-996, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32524852

RESUMEN

High grade-gliomas are highly invasive and prone to metastasis, leading to poor survival and prognosis. Currently, we urgently need a new treatment strategy to effectively inhibit glioma. In this study, artemether and paclitaxel were used as two agents for tumour suppression. Two functional materials were synthesised and modified on the surface of the micelle as targeting molecules. The addition of two functional materials confers the ability of the micelles to effectively cross the blood-brain barrier (BBB) and then target the glioma cells. Thus, this dual-targeted delivery system allows the drug to play a better role in inhibiting tumour invasion and vasculogenic mimicry (VM) channels. In this paper, the anticancer effects of dual-targeted artemether plus paclitaxel micelles on glioma U87 cells were studied in three aspects: (I) In vitro and in vivo targeting assessment, including the role of penetrating BBB and targeting glioma; (II) In vitro regulation of invasion-associated proteins; (III) Inhibition of VM channels formation and invasion in vitro; (IV) The study of pharmacodynamics in tumour-bearing mice. These results suggest that dual-targeted artemether plus paclitaxel micelle may provide a new strategy to treat glioma via inhibiting invasive and VM channels.


Asunto(s)
Arteméter/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Micelas , Terapia Molecular Dirigida , Paclitaxel/farmacología , Animales , Arteméter/uso terapéutico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Interacciones Farmacológicas , Glioma/patología , Ratones , Ratones Endogámicos ICR , Invasividad Neoplásica , Paclitaxel/uso terapéutico
20.
Radiat Oncol ; 15(1): 78, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276638

RESUMEN

PURPOSE: The aim of this study was to characterize changes in hippocampal inflammasomes, pyroptosis and apoptosis in juvenile rats after brain irradiation and to assess whether manganese-enhanced magnetic resonance imaging (MEMRI) reflected those changes. MATERIALS AND METHODS: Four-week-old male Sprague-Dawley rats received a whole-brain radiation dose of 15 Gy or 25 Gy. Hippocampal inflammasomes and apoptosis were measured using Western blot analysis at 4 days and 8 weeks after irradiation. MEMRI and magnetic resonance spectroscopy (MRS) were performed at the same time points. RESULTS: Neither the 15 Gy nor 25 Gy group showed changes in the expression of inflammasome proteins absent in melanoma 2 (AIM2), gasdermin-D (GSDMD), nucleotide oligomerization domain-like receptor protein 1 (NLRP1) and NLRP3 at 4 days or 8 weeks after radiation injury (P > 0.05). Furthermore, the expression levels of the inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 were not significantly different among the groups (P > 0.05). The expression levels of cleaved caspase-1 and -3, indicators of apoptosis, were higher in the irradiation groups than in the control group at 4 days post irradiation, especially for caspase-3 (P < 0.05), but this increase was slightly attenuated at 8 weeks after radiation injury. Four days post irradiation, the MEMRI signal intensity (SI) in the irradiation groups, especially the 25 Gy group, was significantly lower than that in the control group (P < 0.05). Eight weeks after radiation injury, the SI of the 15 Gy group and the 25 Gy group recovered by different degrees, but the SI of the 25 Gy group was still significantly lower than that of the control group (P < 0.05). On day 4 post irradiation, the metabolic ratio of N-acetylaspartate (NAA) to creatine (Cr) in the 15 Gy group and 25 Gy group was significantly lower than that in the control group (P < 0.05). The NAA/Cr ratio in the 15 Gy group recovered to control levels at 8 weeks (P > 0.05), but the NAA/Cr ratio in the 25 Gy group remained significantly lower than that in the control group (P < 0.05). CONCLUSION: Radiation-induced brain injury is dose-dependently associated with apoptosis but not inflammasomes or pyroptosis, and the change in apoptosis can be detected by MEMRI.


Asunto(s)
Apoptosis/efectos de la radiación , Lesiones Encefálicas/patología , Hipocampo/efectos de la radiación , Traumatismos Experimentales por Radiación/patología , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Caspasas/metabolismo , Creatina/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Hipocampo/patología , Inflamasomas/metabolismo , Inflamasomas/efectos de la radiación , Imagen por Resonancia Magnética , Masculino , Compuestos de Manganeso/administración & dosificación , Dosis de Radiación , Traumatismos Experimentales por Radiación/diagnóstico por imagen , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA