Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 274: 116229, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508101

RESUMEN

Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.


Asunto(s)
Bacillus cereus , Carbono , Secuestro de Carbono , Ribulosa-Bifosfato Carboxilasa , Suelo/química , Carbón Orgánico/química , Agricultura/métodos
2.
J Hazard Mater ; 466: 133688, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310845

RESUMEN

Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Oryza/genética , Lignina , Perfilación de la Expresión Génica , Fotosíntesis , Raíces de Plantas/genética , Raíces de Plantas/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
3.
J Environ Manage ; 353: 120084, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281421

RESUMEN

Crop straw return is a widely used agricultural management practice. The addition of crop straw significantly alters the pool of dissolved organic matter (DOM) in agricultural soils and plays a pivotal role in the global carbon (C) cycle, which is sensitive to climate change. The DOM concentration and composition at different soil depths could regulate the turnover and further storage of organic C in terrestrial systems. However, it is still unclear how crop straw return influences the change in DOM composition in rice paddy soils. Therefore, a field experiment was conducted in which paddy soil was amended with crop straw for 10 years. Two crop straw-addition treatments [NPK with 50% crop straw (NPK+1/2S) and NPK with 100% crop straw (NPK + S)], a conventional mineral fertilization control (NPK) and a non-fertilized control were included. Topsoil (0-20 cm) and subsoil (20-40 cm) samples were collected to investigate the soil DOM concentration and compositional structure of the profile. Soil nutrients, iron (Fe) fraction, microbial biomass carbon (MBC), and concentration and optical properties (UV-Vis and fluorescence spectra) of soil DOM were determined. Here, we found that the DOM in the topsoil was more humified than that in the subsoil. The addition of crop straw further decreased the humidification degree of DOM in the subsoil. In crop straw-amended topsoil, microbial decomposition controlled the composition of DOM and induced the formation of aromatic DOM. In the straw-treated subsoil, selective adsorption by poorly crystalline Fe(oxyhydr)oxides and microbial decomposition controlled the composition of DOM. In particular, the formation of protein-like compounds could have played a significant role in the microbial degradation of DOM in the subsoil. Overall, this work conducted a case study within long-term agricultural management to understand the changes in DOM composition along the soil profile, which would be further helpful for evaluating C cycling in agricultural ecosystems.


Asunto(s)
Materia Orgánica Disuelta , Oryza , Ecosistema , Suelo/química , Agricultura , Carbono
4.
Huan Jing Ke Xue ; 44(8): 4679-4688, 2023 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-37694660

RESUMEN

Climate warming can increase soil temperature and lead to soil carbon release, but it can also increase soil organic carbon by increasing primary productivity. Cropland soils are considered to have a huge potential to sequester carbon; however, direct observations for the responses of cropland soil organic carbon to climate warming over broad geographic scales are rarely documented. Paddy soil is one of the important cultivated soils in China. Based on the data of 2217 sampling points obtained during the second national soil survey and the data of 2382 sampling points collected during 2017-2019, this study analyzed the change characteristics of soil organic carbon content of paddy surface soil in Sichuan Basin of China and explored the relationships between the soil organic carbon change of paddy soil and temperature, precipitation, cropland use type, fertilization intensity, and grain yield. The results showed that the content of soil organic carbon of paddy soil changed from 13.33 g·kg-1to 15.96 g·kg-1, with an increase of 2.63 g·kg-1, suggesting that soils in the Sichuan Basin have acted as a carbon sink over past 40 years. The soil organic carbon increment of paddy soil varied with different geomorphic regions and different secondary basins. The increase in SOC content in paddy soil was positively correlated with annual average temperature; negatively correlated with annual average precipitation; and initially increased and then decreased with annual average fertilizer application, annual average increase rate of fertilizer application, annual average grain yield, and annual average grain yield growth rate. The relationship between the increase in SOC content and the annual average temperature growth rate was different under different farmland utilizations, and the increase in the annual average temperature growth rate had significant effects with the increase in SOC content only on paddy-dryland rotation. These results indicate that the paddy soil organic carbon change in Sichuan Basin was co-affected by various factors, but climate warming was an important factor leading to the paddy soil organic carbon change, and its influence was controlled by the water conditions determined by farmland use.

5.
J Hazard Mater ; 458: 131931, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379605

RESUMEN

Cadmium (Cd) is readily absorbed by rice and enters the food chain, posing a health risk to humans. A better understanding of the mechanisms of Cd-induced responses in rice will help in developing solutions to reduce Cd uptake in rice. Therefore, this research attempted to reveal the detoxification mechanisms of rice in response to Cd through physiological, transcriptomic and molecular approaches. The results showed that Cd stress restricted rice growth, led to Cd accumulation and H2O2 production, and resulted cell death. Transcriptomic sequencing revealed glutathione and phenylpropanoid were the major metabolic pathways under Cd stress. Physiological studies showed that antioxidant enzyme activities, glutathione and lignin contents were significantly increased under Cd stress. In response to Cd stress, q-PCR results showed that genes related to lignin and glutathione biosynthesis were upregulated, whereas metal transporter genes were downregulated. Further pot experiment with rice cultivars with increased and decreased lignin content confirmed the causal relationship between increased lignin and reduced Cd in rice. This study provides a comprehensive understanding of lignin-mediated detoxification mechanism in rice under Cd stress and explains the function of lignin in production of low-Cd rice to ensure human health and food safety.


Asunto(s)
Oryza , Contaminantes del Suelo , Humanos , Cadmio/metabolismo , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Glutatión/metabolismo , Contaminantes del Suelo/metabolismo
6.
Ecotoxicol Environ Saf ; 262: 115146, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37348222

RESUMEN

Ferromanganese oxide biochar composite (FMBC) is an efficient remediation material for cadmium -contaminated soils. However, the effect of FMBC under varied water managements on the remediation of Cd-polluted soil is unclear. In this study, we conducted both incubation and field experiments to investigate the combined effects of corn-stover-derived biochar modified with ferromanganese on the immobilization and uptake of Cd by rice under continuous aerobic (A), aerobic-flooded (AF), and flooded-aerobic (FA) water management regimes. The results showed that loading iron-manganese significantly increased the maximum sorption capacity (Qm) of Cd on FMBC (50.46 mg g-1) due to increased surface area, as compared to the pristine biochar (BC, 31.36 mg g-1). The results revealed that soil Eh and pH were significantly affected by FMBC and it's synergistic application with different water regimes, thus causing significant differences in the concentrations of DTPA-extractable Cd under different treatments. The lowest DTPA-extractable Cd content (0.28-0.46 mg-1) was observed in the treatment with FMBC (2.5 %) combined FA water amendment, which reduced the content of available Cd in soil by 2.63-28.4 %. Moreover, the treatments with FMBC-FA resulted the proportion of residual Cd increased by 22.2 % compared to the control. Variations in the content and fraction of Cd had a significant influence on its accumulation in the rice grains. The FMBC-FA treatments reduced the Cd concentration in roots, shoots and grains by 37.97 %, 33.98 %, and 53.66 %, respectively, when compared with the control. Predominantly because of the reduction in Cd biological toxicity and the improved soil nutrient content, the combined application increased the biomass and yield of rice to some extent. Taken together, the combination of the Fe-Mn modified biochar and flooded-aerobic water management may potentially be applied in Cd-polluted soil to mitigate the impacts of Cd on rice production.

7.
Water Res ; 233: 119757, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822111

RESUMEN

Water toxicity detection, as a valuable supplement to conventional water quality measurement, is an important method for evaluating water environmental quality standards. However, the toxicity of composite pollutants is more complicated due to their mixture effects. This study developed a novel, rapid and interference-resistant detection method for water toxicity based on an electrochemical biosensor using peak current from nitrite oxidation as a signal. Toxicants could weaken the characteristic peak current of nitrite to indicate the magnitude of toxicity. The proof-of-concept study was first conducted using a synthetic water sample containing trichloroacetic acid (TCAA), and then the results were compared with those of the traditional toxicity colorimetric method (CCK-8 kit) and laser confocal microscopy (CLSM). The accuracy of the biosensor was further verified with water samples containing individual pollutants such as Cd2+ (50-150 µg/L), Cr6+ (20-80 µg/L) mixture, triclosan (TCS; 0.1-1.0 µg/L) and TCAA (10-80 µg/L), or a mixture of the above. The viability of the sensor was further validated with the actual water sample from the Tuojiang River. The results demonstrated that although the concentration of a single conventional pollutant in water did not exceed the discharge standard for surface water, the comprehensive toxicity of natural water should not be ignored. This method could be a beneficial supplement to conventional water quality detection to understand the characteristics of the water, and thus contribute to the next stage of water treatment.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Biopelículas , Monitoreo del Ambiente/métodos , Nitrificación , Ríos/química , Ácido Tricloroacético/análisis , Ácido Tricloroacético/toxicidad , Triclosán/análisis , Triclosán/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , China
8.
J Environ Manage ; 330: 117203, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603267

RESUMEN

Accurate mapping of soil organic carbon (SOC) in cropland is essential for improving soil management in agriculture and assessing the potential of different strategies aiming at climate change mitigation. Cropland management practices have large impacts on agricultural soils, but have rarely been considered in previous SOC mapping work. In this study, cropland management practices including carbon input (CI), length of cultivation (LC), and irrigation (Irri) were incorporated as agricultural management covariates and integrated with natural variables to predict the spatial distribution of SOC using the Extreme Gradient Boosting (XGBoost) model. Additionally, we evaluated the performance of incorporating agricultural management practice variables in the prediction of cropland topsoil SOC. A case study was carried out in a traditional agricultural area in the Tuojiang River Basin, China. We found that CI was the most important environmental covariate for predicting cropland SOC. Adding cropland management practices to natural variables improved prediction accuracy, with the coefficient of determination (R2), the root mean squared error (RMSE) and Lin's Concordance Correlation Coefficient (LCCC) improving by 16.67%, 17.75% and 5.62%, respectively. Our results highlight the effectiveness of incorporating agricultural management practice information into SOC prediction models. We conclude that the construction of spatio-temporal database of agricultural management practices derived from inventories is a research priority to improve the reliability of SOC model prediction.


Asunto(s)
Carbono , Suelo , Ríos , Reproducibilidad de los Resultados , Productos Agrícolas , Agricultura/métodos , Secuestro de Carbono
9.
Ecotoxicol Environ Saf ; 249: 114481, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321693

RESUMEN

The impact of atmospheric deposition of cadmium (Cd) in cereal crops has become a global concern. Enhanced lignin content was expected to benefit the plant performance against Cd exposure. To date, however, the underlying mechanisms of lignin regulating foliar Cd absorption in rice (Oryza sativa L.) and its effect on grain yield remains unclear. In present study, the effect and mechanism of rice in response to leaf Cd exposure were investigated using 113Cd stable isotope and a lignin-increased rice mutant. The highest Cd uptake efficiency and uptake amount was observed in wild type (WT) plant grown in the maturity period, which were 3-fold higher than in mutant plant. Compared to WT, the mutant exhibited 14.75% and 25.43% higher contents in G- and S-unit of lignin monomers. Lignin biosynthesis and polymerization related genes (OsPAL/OsCOMT/Os4CL3/OsLAC5/OsLAC15) were significantly up-regulated in mutants. In addition, the enzyme activities involved in the above process were also significantly increased by 1.24-1.49-fold. The increased Cd retention in cell wall and decreased gene expression levels of OsNRAMP5, OsHMA3 and OsIRT1 in mutant indicated that lignin effectively inhibited Cd transportion in plant tissues. Moreover, the antioxidant capacity and photosynthesis efficiency in mutant plant were obviously improved, leading to higher Cd tolerance and increased grain yield. Our results revealed the molecular and physiological mechanisms of enhanced lignin regulating foliar Cd absorption and yield in rice, and provided the valuable rice genotype to ensure food safety.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Lignina/metabolismo , Oryza/metabolismo , Transporte Biológico , Antioxidantes/metabolismo , Grano Comestible/química , Contaminantes del Suelo/análisis
10.
Sci Total Environ ; 851(Pt 2): 158323, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037885

RESUMEN

Cropland soils are considered to have the potential to sequester carbon (C). Warming can increase soil organic C (SOC) by enhancing primary production, but it can also cause carbon release from soils. However, the role of warming in governing cropland SOC dynamics over broad geographic scales remains poorly understood. Using over 4000 soil samples collected in the 1980s and 2010s across the Sichuan Basin of China, this study assessed the warming-induced cropland SOC change and the correlations with precipitation, cropland type and soil type. Results showed mean SOC content increased from 11.10 to 13.85 g C kg-1. Larger SOC increments were observed under drier conditions (precipitation < 1050 mm, dryland and paddy-dryland rotation cropland), which were 1.67-2.23 times higher than under wetter conditions (precipitation > 1050 mm and paddy fields). Despite the significant associations of SOC increment with crop productivity, precipitation, fertilization, cropland type and soil type, warming also acted as one of major contributors to cropland SOC change. The SOC increment changed parabolically with the rise in temperature increase rate under relatively drier conditions, while temperature increase had no impact on cropland SOC increment under wetter conditions. Meanwhile, the patterns of the parabolical relationship varied with soil types in drylands, where the threshold of temperature increase rate, the point at which the SOC increment switched from increasing to decreasing with warming, was lower for clayey soils (Ali-Perudic Argosols) than for sandy soils (Purpli-Udic Cambosols). These results illustrate divergent responses of cropland SOC to warming under different environments, which were contingent on water conditions and soil types. Our findings emphasize the importance of formulating appropriate field water management for sustainable C sequestration and the necessity of incorporating environment-specific mechanisms in Earth system models for better understanding of the soil C-climate feedback in complex environments.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Agricultura/métodos , Secuestro de Carbono , Productos Agrícolas , Agua , China
11.
Sci Total Environ ; 828: 154524, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35288138

RESUMEN

Agricultural intensification driven by land-use changes has caused continuous and cumulative soil acidification (SA) throughout the global agroecosystem. Microorganisms mediate acid-generating reactions; however, the microbial mechanisms responsible for exacerbating SA feedback remain largely unknown. To determine the microbial community composition and putative function associated with SA, we conducted a metagenomic analysis of soils across a chronosequence that has elapsed since the conversion of rice-wheat (RW) to rice-vegetable (RV) rotations. Compared to RW rotations, soil pH decreased by 0.50 and 1.56 units (p < 0.05) in response to 10-year and 20-year RV rotations, respectively. Additionally, acid saturation ratios were increased by 7.3% and 36.2% (p < 0.05), respectively. The loss of microbial beta-diversity was a key element that contributed to the exacerbation of SA in the RV. Notably, the 20-year RV-enriched microbial taxa were more hydrogen (H+)-, aluminium (Al3+)-, and nitrate nitrogen (NO3--N) -dependent and contained more genera exhibiting dehydrogenation functions than did RW-enriched taxa. "M00115, M00151, M00417, and M00004" and "M00531 and M00135" that are the "proton-pumping" and "proton-consuming" gene modules, respectively, were linked to the massive recruitment of acid-dependent biomarkers in 20-year RV soils, particularly Rhodanobacter, Gemmatirosa, Sphingomonas, and Streptomyces. Collectively, soils in long-term RV rotations were highly acidified and acid-sensitive, as the enrichment of microbial dehydrogenation genes allowing for soil buffering capacity is more vulnerable to H+ loading and consequently promotes the colonization of more acid-tolerant and acidogenic microbes, and ultimately provide new clues for researchers to elucidate the interaction between SA and the soil microbiome.


Asunto(s)
Microbiota , Oryza , Streptomyces , Concentración de Iones de Hidrógeno , Microbiota/genética , Protones , Suelo/química , Microbiología del Suelo , Triticum
12.
J Hazard Mater ; 425: 128008, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986570

RESUMEN

Although Cd concentration of grains is generally lower in japonica than in indica subspecies, the effects of root endodermal barriers on the subspecific differences in Cd accumulation in rice (Oryza sativa L.) are poorly understood. Here, we characterized the differences in endodermal differentiation between japonica and indica subspecies and their effects on Cd radial transport. Casparian strips (CSs) and suberin lamellae (SL) in japonica subspecies were initiated at the 6%- 7% and 21%- 27% position from the root tip, respectively, which were 65% and 26% earlier than in indica subspecies, respectively. The lignin/suberin content in japonica subspecies was 47%/42% greater than that in indica subspecies because of the higher expression of lignin/suberin biosynthesis-related genes (OsCASP1, OsPAL, OsCYP86A1 and OsKCS20). Cd exposure induced endodermal plasticity in both subspecies, but the changes in japonica were greater than in indica subspecies. The earlier formation of CSs/SL in japonica subspecies significantly restricted the flow of radial transport tracer to reach the xylem and decreased Cd influx into roots, that is, endodermal barriers inhibited Cd radial transport via both apoplastic and cell-to-cell pathways, thus decreasing the root-to-shoot transport of Cd in japonica subspecies. Our findings are beneficial for the genetic modification of rice with low-Cd-accumulating ability.


Asunto(s)
Cadmio , Oryza , Pared Celular , Oryza/genética , Raíces de Plantas , Xilema
13.
Sci Total Environ ; 807(Pt 3): 151027, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673057

RESUMEN

Soil Cd pollution is a serious environmental issue associated with human activities. However, the factors determining exogenous Cd dynamics in the soil profile in a complex environment are not well understood. Based on regional observations from 169 soil profiles across the Chengdu Plain, this study explored the key factors controlling Cd accumulation in the soil profile under actual field conditions. Results showed that total soil Cd contents decreased from 0.377 to 0.196 mg kg-1 with increasing soil depth. The effects of phosphate fertilizer rates, road density and precipitation on the difference in total soil Cd content were only observed in topsoil, while agricultural land-use type and topography had no impact. In contrast, significant differences in the total soil Cd content among different parent material types were found in the 0-20, 40-60 and 60-100 cm soil depths. One sample t-tests showed that significant Cd accumulation occurred in the whole soil profile in soils formed from Q4 (Quaternary Holocene) grey alluvium, while soils formed from Q3 (Quaternary Pleistocene) old alluvium and Q4 grey-brown alluvium showed significant Cd accumulation only in the 0-40 cm soil layers. In the topsoil, acid soluble Cd accounted for the largest proportion of the total Cd in soils formed from Q4 grey alluvium, reducible Cd was the main fraction in soils formed from Q4 grey-brown alluvium, while reducible Cd and residual Cd contributed the largest proportion of the total soil Cd in soils formed from Q3 old alluvium. The above results indicated that parent material was the decisive factor determining the magnitudes and depths of exogenous Cd accumulation in the soil profile due to its impacts on the Cd fraction distributions. These findings suggested that the parent material-induced Cd fraction distributions and accumulation should be considered for effectively exploring targeted remediation strategies for Cd pollution.


Asunto(s)
Cadmio , Suelo , Humanos
14.
J Environ Manage ; 300: 113718, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34537563

RESUMEN

Accurate mapping of soil organic carbon (SOC) is critical to improve C management and develop sustainable management policies. However, it is constrained by local variations of the model parameters under complex topography, especially in hills. This study applied a methodological framework to optimize the spatial prediction of SOC in the hilly areas during 1981-2012 by quantifying the relative importance of environmental factors, which include both qualitative factors and quantitative variables. Results showed that SOC increased twofold with a moderate spatial dependence during the past 32 years. During this period, land use patterns, soil groups, topographic factors, and vegetation coverage had significant impacts on the SOC changes (p < 0.01). Specifically, the impact of land use patterns has exceeded the impact of soil groups and became the dominant factor affecting SOC changes. Meanwhile, impacts from the topographic factors and vegetation coverage have substantially declined. Based on those results, a combinatorial approach (LS_RBF_HASM) was developed to map SOC using radial basis function neural network (RBF) and high accuracy surface modelling (HASM), and to generate more detailed spatial mapping relationships between SOC and the affecting factors. Compared with ordinary kriging (OK), land use-soil group units (LS) and HASM combined (LS_HASM), multiple linear regression (MLR) and HASM combined with LS (LS_MLR_HASM); LS_RBF_HASM showed a better performance with a decline of 6.3%-37.7% prediction errors and more accurate spatial patterns due to the quantitative combination of auxiliary environmental variables and more information on the SOC variations within local factors captured by RBF and HASM. Additionally, MLR may partially undermine the relationship of the internal spatial structure due to the highly nonlinear relation between SOC and environmental variables. This methodological framework highlights the optimization of more environmental factors and the calculation of spatial variability within local factors and provides a more accurate approach for SOC mapping in hills.


Asunto(s)
Carbono , Suelo , Carbono/análisis , China , Análisis Espacial
15.
Colloids Surf B Biointerfaces ; 207: 112019, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34388611

RESUMEN

Titanium and titanium alloys have broad applications in orthopedic implants due to their excellent mechanical properties and biocompatibility. The biological activity of the metallic implants can be improved by implementing a nano-hydroxyapatite (nano-HA) coating, while it is still challenging to synthesize uniform and stable nano-HA on the metallic materials. The characterization results confirmed that the nanotube array with a diameter of 87 ± 21 nm and a length of 8.1 ± 1.3 µm is achieved by using double anodic oxidation, and then microsphere-like nano-HA crystals are formed on the TiO2 nanotube arrays. Through X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometer (FT-IR) analysis, it is determined that the chemical composition of the coating is hydroxyapatite. in vitro cell experiments, compared to the TZNF metal surface, the TZNF-NTs/HA is beneficial to the proliferation and adhesion of osteoblasts, and the activity of ALP was 6.93 ± 0.47 DEA unit and the content of OCN was 7.04 ± 0.51 ng/L. In terms of the expression of osteogenic gene information as osterix, osteopontin, and osteonectin, the mRNA levels of TZNF-NTs/HA were 2.6-fold, 1.6-fold, and 4.3-fold higher than that of TZNF samples, respectively, at 14 days. The results suggested that the introduction of nano-HA improves osteoblast differentiation and local factor production, as well as indicates the potential for improved implant osseointegration.


Asunto(s)
Durapatita , Nanotubos , Aleaciones/farmacología , Materiales Biocompatibles Revestidos/farmacología , Osteoblastos , Osteogénesis , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Titanio/farmacología
16.
Huan Jing Ke Xue ; 42(7): 3555-3564, 2021 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-34212682

RESUMEN

The spatial distribution of fertilization intensity and its influencing factors are significant for the accurate management of fertilization and pollution prevention and control. Previous studies are mostly limited to the discussion of human factors that influences the spatial distribution of fertilization intensity while ignoring natural geographical factors. Based on the chemical fertilizer survey data collected from 23492 sites in Chengdu Plain and combined with Geostatistics analysis and Geographic Information System (GIS) technology, the spatial distribution characteristics and influencing factors of average nitrogen and phosphorus fertilizer application intensity from 2010 to 2015 in this region were explored. The results show that:① the average annual application intensity of nitrogen and phosphorus fertilizer in the study area from 2010 to 2015 is generally in the low and medium risk intensity of 120-360 kg·hm-2 and 60-180 kg·hm-2. The high risk intensity is mainly distributed in the grain (fruit) and vegetable growing areas such as Pidu, Pengzhou, Shifang, Longquanyi and Jintang, while the relatively low value areas are mostly distributed in the south and northeast. ② the nugget coefficients of nitrogen and phosphorus fertilizer application intensities are 66.17% and 41.60%. Their spatial distribution is determined by structural and random factors, showing a moderate spatial autocorrelation. ③ both human and natural factors have significant effects on the application intensity of nitrogen and phosphorus fertilizer. The crop type (fine classification) can explain the spatial variation of nitrogen fertilizer and phosphorus fertilizer respectively by 12.90% and 25.10%, which is the main controlling factor affecting the spatial distribution of nitrogen and phosphorus application intensity; the importance of soil parent material is second only to the planting crop type, and the independent explanation ability of phosphorus application intensity is about 3.6 times higher than that of nitrogen application intensity. When the type of planting crop plays a decisive role, the soil parent material still deeply restricts and affects the spatial distribution of nitrogen and phosphorus fertilizer application intensity in the study area. Therefore, the comprehensive effects of planting crop types and soil parent materials should be considered in fertilization management and environmental risk analysis, and the effects of soil parent material should also be taken into account in the application of phosphate fertilizer.


Asunto(s)
Fertilizantes , Fósforo , Agricultura , China , Fertilizantes/análisis , Nitrógeno/análisis , Fósforo/análisis , Suelo
17.
Sci Total Environ ; 785: 147209, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932679

RESUMEN

Urbanization is progressing rapidly. It can affect soils ecosystem services directly through land management and indirectly through changes in the socioeconomic environment, which eventually leads to an increase in emissions of greenhouse gases. Soil carbon (C) sequestration plays an important role in offsetting the anthropogenic C emissions. However, there is limited knowledge of how urbanization affects the soil C especially that in suburban. In this study, we studied changes in easily oxidizable organic C (EOC) and total organic C (TOC) of suburban soils (0-100 cm) in the rapid urbanising megacity Chengdu, China. The EOC stock and TOC stock decreased from the outer-suburb to the inner-suburb by 17.8-28.2% and 5.4-13.5%, respectively; particularly, the inner-suburb EOC decreased by 31.4-38.6% during the past 10 years. The quotient of EOC/TOC in the soil profile, reflecting the stability of soil C, declined from the outer-suburb (0.78) to the inner-suburb (0.20). Factors that influenced the EOC and TOC included the changes in economics (economic density, industrialization), farmland (cultivated area, farmland structure), urbanization (city size, population growth) and traffic flow. Among which, economic density growth was the primarily driver of the loss in TOC, explaining 31.6% of the variation in soil surface TOC and 16.0% of the variation in subsoil TOC; changes in farmland and urban expansion were the main factors contributing to the loss of subsoil EOC, with 40.4% explanatory ability. In addition, traffic flow also has contribution to the subsoil EOC loss. We concluded that the increasing soil C loss with decreasing distance from the city centre has a continuous contribution to C emission, and the C loss will persist until the suburbs are fully urbanized. The large losses of EOC and TOC caused by urbanization, and their contribution to global warming, necessitate their consideration in future appraisals of climate change and urban planning projects.

18.
Waste Manag ; 127: 112-120, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33933868

RESUMEN

The recycling of agricultural waste is a global challenge to the sustainable development of agriculture. By using corn stalks, we studied the feasibility of combining anaerobic fermentation and pyrolysis processes to produce both fermentated liquid feed and biologically modified biocharas cadmium adsorbents. Anaerobic ensiling enhanced the biodegradation of corn stalks by increasing crude protein and reducing fiber contents. After 24-h anaerobic fermentation, corn stalks silage was decomposed into the liquid filtrate and non-fermented residue. Fermented liquid feed (FLF) was prepared by storing feed and liquid filtrate (1:4.0, wt/wt) in a closed tank at 20 °C for 4 days, which showed desired properties (pH < 4.5, lactic acid bacteria greater than 9.0 lg cfu g-1, lactic acid greater than 100 mmol L-1). The non-fermented residue was pyrolyzed at 500 °C to prepare biologically modified biochar (BCB24). In comparison with pristine biochar produced from corn stalks (CB), anaerobic ensiling and anaerobic fermentation significantly increased the surface area, oxygen-containing functional groups, as well as mineral components in BCB24. The maximum sorption capacity of Cd(II) for BCB24 was 2.1 times of CB, suggesting that BCB24 is an effective adsorbent for Cd(II) removal from water. Our results indicated that coupling anaerobic fermentation and pyrolysis technology can significantly improve the efficiency of corn stalks recycling.


Asunto(s)
Cadmio , Zea mays , Carbón Orgánico , Fermentación , Ensilaje
19.
Oncol Lett ; 21(5): 345, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33747202

RESUMEN

Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a tumor suppressor in several cancers, such as glioma, prostate cancer and esophageal cancer. However, the role of MEG3 in hepatocellular carcinoma (HCC) and the related molecular mechanisms are not well understood. The present study aimed to determine the biological function of MEG3 in regulating HCC cell viability, apoptosis and migration. In addition, the interaction between MEG3, microRNA (miR)-9-5p and Midkine (MDK), and the activation of the phosphoinositide-dependent kinase (PDK)/AKT pathway in HCC cell line MHCC-97L were examined. Luciferase reporter assays, reverse transcription-quantitative PCR and western blotting were used to determine the interaction between MEG3, miR-9-5p and MDK and the activation of the PDK/AKT pathway. Cell viability was determined by the CCK8 assay and the cell cycle analysis using flow cytometry analysis. Cell apoptosis was examined by flow cytometry analysis and caspase 3/9 activity. Wound healing assays and western blotting were used to investigate cell migration. The present study demonstrated that MEG3 suppressed HCC cell viability and migration, and induced cell apoptosis. In addition, it was also found that MEG3 targets the miR-9-5p/MDK axis and modulates the PDK/AKT pathway in HCC. In conclusion, the findings of the present study demonstrated that lncRNA MEG3 affects HCC cell viability, apoptosis and migration through its targeting of miR-9-5p/MDK and regulation of the PDK/AKT pathway. The MEG3/miR-9-5p/MDK axis may be a potential therapeutic target in HCC.

20.
Glob Chang Biol ; 26(7): 4134-4146, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32267043

RESUMEN

Agricultural soils have tremendous potential to sequester soil organic carbon (SOC) and mitigate global climate change. However, agricultural land use has a profound impact on SOC dynamics, and few studies have explored how agricultural land use combined with soil conditions affect SOC changes throughout the soil profile. Based on a paired soil resampling campaign in the 1980s and 2010s, this study investigated the SOC changes of the soil profile caused by agricultural land use and the correlations with parent material and topography across the Chengdu Plain of China. The results showed that the SOC content increased by 3.78 g C/kg in the topsoil (0-20 cm), but decreased in the 20-40 cm and 40-60 cm soil layers by 0.90 and 1.26 g C/kg respectively. SOC increases in topsoil were observed for all types of agricultural land. Afforestation on former agricultural land also caused SOC decreases in the 20-60 cm soil layers, while SOC decreases only occurred in the 40-60 cm soil layer for agricultural land using a traditional crop rotation (i.e. traditional rice-wheat/rapeseed rotation) and with rice-vegetable rotations converted from the traditional rotations. For each agricultural land use, SOC decreases in deep soils only occurred in high relief areas and in soils formed from Q4 (Quaternary Holocene) grey-brown alluvium and Q4 grey alluvium that had a relatively low soil bulk density and clay content. The results indicated that SOC change caused by agricultural land use was depth dependent and that the effects of agricultural land use on soil profile SOC dynamics varied with soil characteristics and topography. Subsoil SOC decreases were more likely to occur in high relief areas and in soils with low soil bulk density and low clay content.


Asunto(s)
Carbono , Suelo , Agricultura , Carbono/análisis , China , Productos Agrícolas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA