Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
1.
iScience ; 27(5): 109616, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706845

RESUMEN

Among various electrocatalysts, high-entropy alloys (HEAs) have gained significant attention for their unique properties and excellent catalytic activity in the hydrogen evolution reaction (HER). However, the precise synthesis of HEA catalysts in small sizes remains challenging, which limits further improvement in their catalytic performance. In this study, boron- and nitrogen-doped HEA porous carbon nanofibers (HE-BN/PCNF) with an in situ-grown dendritic structure were successfully prepared, inspired by the germination and growth of tree branches. Furthermore, the dendritic fibers constrained the growth of HEA particles, leading to the synthesis of quantum dot-sized (1.67 nm) HEA particles, which also provide a pathway for designing HEA quantum dots in the future. This work provides design ideas and guiding suggestions for the preparation of borated HEA fibers with different elemental combinations and for the application of dendritic nanofibers in various fields.

2.
Plants (Basel) ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732386

RESUMEN

Nicosulfuron, an acetolactate synthase (ALS) inhibitor herbicide, is a broad-spectrum and highly effective post-emergence herbicide. Glycosyltransferases (GTs) are widely found in organisms and transfer sugar molecules from donors to acceptors to form glycosides or sugar esters, thereby altering the physicochemical properties of the acceptor molecule, such as participating in detoxification. In this study, nine glycosyltransferases in group D of the apple glycosyltransferase family I were predicted to possibly be involved in the detoxification metabolism of ALS-inhibiting herbicides based on gene chip data published online. In order to confirm this, we analysed whether the expression of the nine glycosyltransferase genes in group D was induced by the previously reported ALS-inhibiting herbicides by real-time PCR (polymerase chain reaction). It was found that the ALS-inhibiting herbicide nicosulfuron significantly increased the expression of the MdUGT73CG22 gene in group D. Further investigation of the mechanism of action revealed that the apple glycosyltransferase MdUGT73CG22 glycosylated and modified nicosulfuron both in vivo and ex vivo to form nicosulfuron glycosides, which were involved in detoxification metabolism. In conclusion, a new glycosyltransferase, MdUGT73CG22, was identified for the first time in this study, which can glycosylate modifications of the ALS-inhibiting herbicide nicosulfuron and may be involved in the detoxification process in plants, which can help to further improve the knowledge of the non-targeted mechanism of herbicides.

3.
Int J Spine Surg ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744484

RESUMEN

BACKGROUND: There is a lack of consensus on the use of postoperative bracing for lumbar degenerative conditions. Spine surgeons typically determine whether to apply postoperative braces based primarily on clinical experience rather than robust, evidence-based medical data. Thus, the present study sought to assess the impact of postoperative bracing on clinical outcomes, complications, and fusion rates following lumbar fusion surgery in patients with degenerative spinal conditions. METHODS: Only randomized controlled studies published between January 1990 and 20 October 2023 were included in this meta-analysis. The primary outcome measures consisted of pre- and postoperative assessments of the Oswestry Disability Index (ODI) and visual analog scale (VAS) scores. Improvements in VAS and ODI scores were analyzed in the early postoperative period (1 month after operation) and at final follow-up, respectively. The analysis also encompassed fusion rates and complications. RESULTS: Five studies with 362 patients were included in the present meta-analysis. In the early postoperative period, the brace group showed a relatively better improvement in ODI scores compared with the no-brace group (19.47 vs 18.18), although this difference was not statistically significant (P = 0.34). Similarly, during the late postoperative period, the brace group demonstrated a slightly greater improvement in VAS scores in comparison to the no-brace group (4.05 vs 3.84), but this difference did not reach statistical significance (P = 0.30). The complication rate was relatively lower in the brace group compared with the no-brace group (14.9% vs 17.4%), although there was no statistical difference between the 2 groups (P = 0.83). Importantly, there were no substantial differences in fusion rates between patients with or without braces. CONCLUSION: The present meta-analysis revealed that the implementation of a brace following lumbar fusion surgery did not yield substantial differences in terms of postoperative pain relief, functional recovery, complication rates, or fusion rates when compared with cases where no brace was employed. CLINICAL RELEVANCE: This meta-analysis provides valuable insights into the clinical impact of postoperative bracing following lumbar fusion surgery for degenerative spinal conditions.

4.
Plant Sci ; 345: 112111, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734143

RESUMEN

Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38635119

RESUMEN

PURPOSE: Currently, the rigid instruments used for laparoscopic radical resection of prostate cancer not only have the risk of damage to tissues, blood vessels, and nerves, but their limited freedom will also cause surgical blind areas. Soft robots are expected to solve these issues due to inherent flexibility, compliance, and safe interaction with tissues and organs. In addition, to achieve high surgical accuracy and provide precise guidance for surgeons, the navigation method should be studied for the soft robot. METHODS: A soft robot system for single-port transvesical radical prostatectomy (STRP) is developed, and a navigation method combining fiber Bragg gratings and electromagnetic tracking is proposed for the soft robot. To validate the soft robot design and the effectiveness of the navigation method, different groups of experiments are conducted. RESULTS: The proposed navigation method can achieve accurate location and shape sensing of the soft manipulator. The experiments show that the maximum tip sensing error is 2.691 mm, which is 5.38 % of the robot length for static configurations, and that the average tip sensing error is 1.966 mm, which corresponds to 3.93 % of the robot length for dynamic scenarios. Additionally, phantom tests demonstrate that the designed soft robot can enter the prostate through navigation guidance in a master-slave control mode and cover the entire prostate space. CONCLUSIONS: The designed soft robot system, due to its soft structure, good flexibility, and accurate navigation, is expected to improve surgical safety and precision, thereby exhibiting significant potential for STRP.

6.
J Colloid Interface Sci ; 667: 192-198, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636221

RESUMEN

Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.

7.
BMC Musculoskelet Disord ; 25(1): 322, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654321

RESUMEN

OBJECTIVE: This study aimed to assess the impact of full endoscopic transforaminal discectomy (FETD) on clinical outcomes and complications in both obese and non-obese patients presenting with lumbar disc herniation (LDH). METHODS: A systematic search of relevant literature was conducted across various primary databases until November 18, 2023. Operative time and hospitalization were evaluated. Clinical outcomes included preoperative and postoperative assessments of the Oswestry Disability Index (ODI) and visual analogue scale (VAS) scores, conducted to delineate improvements at 3 months postoperatively and during the final follow-up, respectively. Complications were also documented. RESULTS: Four retrospective studies meeting inclusion criteria provided a collective cohort of 258 patients. Obese patients undergoing FETD experienced significantly longer operative times compared to non-obese counterparts (P = 0.0003). Conversely, no statistically significant differences (P > 0.05) were observed in hospitalization duration, improvement of VAS for back and leg pain scores at 3 months postoperatively and final follow-up, improvement of ODI at 3 months postoperatively and final follow-up. Furthermore, the overall rate of postoperative complications was higher in the obese group (P = 0.02). The obese group demonstrated a total incidence of complications of 17.17%, notably higher than the lower rate of 9.43% observed in the non-obese group. CONCLUSION: The utilization of FETD for managing LDH in individuals with obesity is associated with prolonged operative times and a higher total complication rate compared to their non-obese counterparts. Nevertheless, it remains a safe and effective surgical intervention for treating herniated lumbar discs in the context of obesity.


Asunto(s)
Discectomía , Endoscopía , Desplazamiento del Disco Intervertebral , Vértebras Lumbares , Obesidad , Complicaciones Posoperatorias , Humanos , Desplazamiento del Disco Intervertebral/cirugía , Obesidad/cirugía , Obesidad/complicaciones , Vértebras Lumbares/cirugía , Resultado del Tratamiento , Endoscopía/métodos , Endoscopía/efectos adversos , Discectomía/efectos adversos , Discectomía/métodos , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Tempo Operativo , Dimensión del Dolor , Evaluación de la Discapacidad , Estudios Retrospectivos
8.
BMC Med Genomics ; 17(1): 96, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650036

RESUMEN

BACKGROUND: The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients. METHODS: Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted. RESULTS: The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation. CONCLUSION: Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.


Asunto(s)
Linfangioma Quístico , Análisis de la Célula Individual , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Linfangioma Quístico/genética , Linfangioma Quístico/metabolismo , Linfangioma Quístico/patología , Femenino , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Análisis de Secuencia de ARN , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Transcriptoma
9.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 273-278, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38595244

RESUMEN

OBJECTIVE: To investigate the rates of low disease activity and clinical remission in patients with systemic lupus erythematosus (SLE) in a real-world setting, and to analyze the related factors of low disease activity and clinical remission. METHODS: One thousand patients with SLE were enrolled from 11 teaching hospitals. Demographic, clinical and laboratory data, as well as treatment regimes were collec-ted by self-completed questionnaire. The rates of low disease activity and remission were calculated based on the lupus low disease activity state (LLDAS) and definitions of remission in SLE (DORIS). Charac-teristics of patients with LLDAS and DORIS were analyzed. Multivariate Logistic regression analysis was used to evaluate the related factors of LLDAS and DORIS remission. RESULTS: 20.7% of patients met the criteria of LLDAS, while 10.4% of patients achieved remission defined by DORIS. Patients who met LLDAS or DORIS remission had significantly higher proportion of patients with high income and longer disease duration, compared with non-remission group. Moreover, the rates of anemia, creatinine elevation, increased erythrocyte sedimentation rate (ESR) and hypoalbuminemia was significantly lower in the LLDAS or DORIS group than in the non-remission group. Patients who received hydroxychloroquine for more than 12 months or immunosuppressant therapy for no less than 6 months earned higher rates of LLDAS and DORIS remission. The results of Logistic regression analysis showed that increased ESR, positive anti-dsDNA antibodies, low level of complement (C3 and C4), proteinuria, low household income were negatively related with LLDAS and DORIS remission. However, hydroxychloroquine usage for longer than 12 months were positively related with LLDAS and DORIS remission. CONCLUSION: LLDAS and DORIS remission of SLE patients remain to be improved. Treatment-to-target strategy and standar-dized application of hydroxychloroquine and immunosuppressants in SLE are recommended.


Asunto(s)
Hidroxicloroquina , Lupus Eritematoso Sistémico , Humanos , Hidroxicloroquina/uso terapéutico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Índice de Severidad de la Enfermedad
10.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682926

RESUMEN

This study aimed to assess the effects of Anti-fatigue Decoction (AFD) against central fatigue by observing the behaviors and serological indicators of rats modeled by the modified multiple platform method (MMPM) after drug intervention. Grip strength measurements were used to evaluate the muscle strength of rats. The open field test was utilized to assess anxiety-like behavior, while the Morris water maze test was conducted to evaluate the memory function of the rats. Following the behavioral assessments, rat serum samples were collected to measure the concentrations of corticosterone (CORT) and lactic acid (LAC). The concentration of LAC was determined using the colorimetric method, while the concentration of CORT was measured using the enzyme-linked immunosorbent assay (ELISA) method. Compared to the blank control group, following MMPM modeling, rats exhibited significant reductions in grip strength and impaired ability to memory. The serum analysis revealed increased levels of LAC and CORT in the model group rats. AFD can noticeably reverse these adverse changes to a certain extent. These findings highlight the positive effects of AFD and coenzymeQ10 on physical and cognitive abilities and alterations in serum biomarker levels of central fatigue rats.


Asunto(s)
Corticosterona , Modelos Animales de Enfermedad , Fatiga , Animales , Ratas , Corticosterona/sangre , Masculino , Fatiga/sangre , Fatiga/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Ratas Sprague-Dawley , Ácido Láctico/sangre , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación
11.
Nat Commun ; 15(1): 3041, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589412

RESUMEN

Sugarcane is a vital crop with significant economic and industrial value. However, the cultivated sugarcane's ultra-complex genome still needs to be resolved due to its high ploidy and extensive recombination between the two subgenomes. Here, we generate a chromosomal-scale, haplotype-resolved genome assembly for a hybrid sugarcane cultivar ZZ1. This assembly contains 10.4 Gb genomic sequences and 68,509 annotated genes with defined alleles in two sub-genomes distributed in 99 original and 15 recombined chromosomes. RNA-seq data analysis shows that sugar accumulation-associated gene families have been primarily expanded from the ZZSO subgenome. However, genes responding to pokkah boeng disease susceptibility have been derived dominantly from the ZZSS subgenome. The region harboring the possible smut resistance genes has expanded significantly. Among them, the expansion of WAK and FLS2 families is proposed to have occurred during the breeding of ZZ1. Our findings provide insights into the complex genome of hybrid sugarcane cultivars and pave the way for future genomics and molecular breeding studies in sugarcane.


Asunto(s)
Saccharum , Saccharum/genética , Fitomejoramiento , Genómica , Haplotipos/genética , Cromosomas
12.
Biomaterials ; 308: 122551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593710

RESUMEN

Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.


Asunto(s)
Cinesinas , Regeneración , Sarcopenia , Animales , Cinesinas/metabolismo , Ratones , Sarcopenia/metabolismo , Sarcopenia/patología , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular , Desarrollo de Músculos , Masculino , Transportador de Glucosa de Tipo 4/metabolismo , Matriz Extracelular/metabolismo , Mitocondrias/metabolismo , Fenómenos Biomecánicos , Glucosa/metabolismo
13.
Plant Dis ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499972

RESUMEN

In February 2022, leaf zonate spot disease afflicted Aloe vera L. in Yunnan, China, endangering the $39 billion industry with 0.33ha under cultivation (Wan 2015). The disease manifested with watery spots progressing into oval or circular necrosis lesions, characterized by a dark center surrounded by a gray-brown zone. In the late stage of the disease, lesions regress in size and several small dark picnidia dots appeared on the gray-brown zone. The disease incidence ranged from 10% to 15% in three commercial plantations. If left uncontrolled, the disease could diminish the commercial value of Aloe vera plants. Eighteen symptomatic leaf samples underwent morphological and genetic identification. The samples were carefully washed with distilled water and 1×1 cm2 sections of tissue were excised using a sterile scalpel. The sections underwent surface-disinfection with 3% NaOCl for 3 min and 75% ethanol for 30 s. After three sterile water rinses the sections were air-dried. Subsequently, they were transferred to potato dextrose agar (PDA) before being incubated at 25 ℃ in the dark. Of the 18 samples, eight produced the colonies with similar morphological characteristics, named LH7. Isolate LH7 had downy to woolly aerial mycelia, initially pinkish white on the surface, and gradually turned greenish-olivaceous from the middle, and eventually turned dark brown to black after seven days. The fungus formed arthric chains in the aerial mycelium on PDA but did not produce conidiomata. The conidia, which occurred in arthric chains were 5.50-9.9 × 4.08-7.51 µm (mean 7.09× 5.26 µm, n=50) in size, cylindrical, brown, and 0-1 septate. To ascertain LH7's pathogenicity, three healthy one-year old aloe plants were surface-sanitized with a 1% aqueous chlorine solution, rinsed with sterile water, and dried. Three leaves from each plant were punctuated and inoculated using conidial suspension (100 µl of 1x 106 conidial mL-1), while three control plants were inoculated with sterile distilled water. The pathogenicity tests were repeated twice. The inoculated plants were kept at 25 ℃ with a 12-hour light/12-hour dark cycle. After seven days, symptoms observed in the field appeared in the plants, while no disease occurred in the control plants. After 21 days, conidiomata formed on the inoculated leaves, averaging 116.92 µm (n=20) in diameter. These conidiomata were globose to subglobose, and brown to sub-brown. The fungus was successfully re-isolated from symptomatic tissue and the resulting colonies were morphologically consistent with isolate LH7. Based on the characteristics, the fungus was identified as Neoscytalidium dimidiatum (Philips et al. 2013). The specimen was deposited in China Center for Type Culture Collection ( CCTCC AF 2024001). This identification was confirmed through sequencing of ITS gene region of rDNA using ITS1/ITS4 (Imran et al. 2022). The sequence was submitted into GenBank database (ON878059). BLAST analysis of the LH7's ITS amplicon showed 100% similarity with that of JN093303.1. A phylogenetic tree constructed using the maximum likelihood method revealed that ON878059 was clustered with JN093303.1. Previous studies have documented that pathogens such as Colletotrichum gloeosporioides (Penz.), Fusarium spp. and Rhizopus oryzae can also cause diseases in A. vera in China (Zhou et al. 2008; Ding et al. 2015). Additinonally, Cladosporium sphaerospermum, Pseudopestalotiopsis theae, and Lasiodiplodia theobromae have been identified as causal agents of aloe leaf spot diseases in India, Bangladesh and Malaysia (Avasthi et al. 2016; Ahmmed et al. 2022; Khoo et al. 2022). To our knowledge, this is the first report of N. dimidiatum causing leaf necrosis of aloe in China. Vigilant surveillance and disease control measures are imperative to mitigate potential losses in this region.

14.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38441428

RESUMEN

We reported here on the fabrication and characterization of a smart titanium alloy bolt based on a high-frequency piezoelectric thin-film sensor. The thin-film sensor was directly deposited on a titanium alloy bolt head with radio frequency magnetron sputtering and characterized by a scanning electron microscope and an atomic force microscope. The ultrasonic characteristics of the smart bolt, which include a pure and broad frequency spectrum peaked at 14.81 MHz, high measurement accuracy below 3%, and high repeatability free from some interference from bolt detection position change, were fully characterized. No obvious frequency shift was observed with the increase in axial preload. Based on the mono-wave method [TOF (time of flight) of longitudinal mode wave], TOF change increased linearly with preload force in the range of 0-20 kN. With the increase in temperature from 22 to 150 °C, the TOF linearly increases while the longitudinal wave velocity linearly decreases. The results indicate the prepared smart titanium alloy bolt is suitable as a smart aviation and automotive fastener.

15.
Adv Mater ; : e2313860, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529666

RESUMEN

Ion migration-induced intrinsic instability and large-area fabrication pose a tough challenge for the commercial deployment of perovskite photovoltaics. Herein, an interface heterojunction and metal electrode stabilization strategy is developed by suppressing ion migration via managing lead-based imperfections. After screening a series of cations and nonhalide anions, the ideal organic salt molecule dimethylammonium trifluoroacetate (DMATFA) consisting of dimethylammonium (DMA+) cation and trifluoroacetate (TFA-) anion is selected to manipulate the surface of perovskite films. DMA+ enables the conversion of active excess and/or unreacted PbI2 into stable new phase DMAPbI3, inhibiting photodecomposition of PbI2 and ion migration. Meanwhile, TFA- can suppress iodide ion migration through passivating undercoordinated Pb2+ and/or iodide vacancies. DMA+ and TFA- synergistically stabilize the heterojunction interface and silver electrode. The DMATFA-treated inverted perovskite solar cells and modules achieve a maximum efficiency of 25.03% (certified 24.65%, 0.1 cm2) and 20.58% (63.74 cm2), respectively, which is the record efficiency ever reported for the devices based on vacuum flash evaporation technology. The DMATFA modification results in outstanding operational stability, as evidenced by maintaining 91% of its original efficiency after 1520 h of maximum power point continuous tracking.

16.
Cancers (Basel) ; 16(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473249

RESUMEN

The strategy of drug repurposing has gained traction in the field of cancer therapy as a means of discovering novel therapeutic uses for established pharmaceuticals. Paroxetine (PX), a selective serotonin reuptake inhibitor typically utilized in the treatment of depression, has demonstrated promise as an agent for combating cancer. Nevertheless, the specific functions and mechanisms by which PX operates in the context of triple-negative breast cancer (TNBC) remain ambiguous. This study aimed to examine the impact of PX on TNBC cells in vitro as both a standalone treatment and in conjunction with other pharmaceutical agents. Cell viability was measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, apoptosis was assessed through flow cytometry, and the effects on signaling pathways were analyzed using RNA sequencing and Western blot techniques. Furthermore, a subcutaneous tumor model was utilized to assess the in vivo efficacy of combination therapy on tumor growth. The results of our study suggest that PX may activate the Ca2+-dependent mitochondria-mediated intrinsic apoptosis pathway in TNBC by potentially influencing the PI3K/AKT/mTOR pathway as well as by inducing cytoprotective autophagy. Additionally, the combination of PX and chemotherapeutic agents demonstrated moderate inhibitory effects on 4T1 tumor growth in an in vivo model. These findings indicate that PX may exert its effects on TNBC through modulation of critical molecular pathways, offering important implications for improving chemosensitivity and identifying potential therapeutic combinations for clinical use.

17.
Environ Sci Pollut Res Int ; 31(14): 20772-20791, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393568

RESUMEN

Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supplementation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, fruit quality, disease control, phytoremediation potential, and resource use efficiency.


Asunto(s)
Luz Verde , Plantas , Fenómenos Fisiológicos de las Plantas , Desarrollo de la Planta , Luz
18.
J Food Prot ; 87(4): 100244, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378071

RESUMEN

Strawberries rapidly deteriorate postharvest, necessitating effective measures to extend their shelf life. This study focused on developing an eco-friendly chitosan-based protective film for strawberry preservation. Strawberries were treated with a coating solution containing varying concentrations of hawthorn leaf extract (HLE) (0.4%, 0.7%, and 1.0%), 1.5% chitosan (CH), and 1% acetic acid. The results demonstrated that coating strawberry fruit with 1% CH-HLE notably delayed fruit spoilage. In-depth analysis revealed that, compared with the uncoated strawberry fruits, the 1% CH-HLE coating effectively reduced weight loss, the respiration intensity, malondialdehyde (MDA) levels, and superoxide anion (O2·-) production. Additionally, the coated strawberries exhibited improved firmness, total soluble solids (TSS), vitamin C (Vc) content, titratable acidity (TA), and total phenolic compound (TPC) content. The enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in the CH-HLE-coated strawberries were greater than those in their uncoated counterparts. The application of a 1% CH-HLE coating successfully delayed spoilage and extend the shelf life of the strawberries by approximately 4-5 days. These findings suggest that CH-HLE has significant potential as a resource for protecting fruits and vegetables, offering an environmentally sustainable solution for postharvest preservation.


Asunto(s)
Quitosano , Crataegus , Fragaria , Conservación de Alimentos/métodos , Quitosano/farmacología , Frutas , Extractos Vegetales/farmacología
19.
Neurospine ; 21(1): 261-272, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38317558

RESUMEN

OBJECTIVE: This meta-analysis aims to refine the understanding of the optimal choice between different cage shapes in transforaminal lumbar interbody fusion (TLIF) by systematically comparing perioperative data, radiological outcomes, clinical results, and complications associated with banana-shaped and straight bullet cages. METHODS: A meticulous literature search encompassing PubMed, Embase, Scopus, Web of Science, China Knowledge Network, and Wanfang Data was executed up to October 5, 2023. Inclusion criteria focused on studies comparing banana-shaped and straight bullet cages in TLIF. The quality of included studies was assessed using appropriate tools such as the Newcastle-Ottawa Scale (NOS) for nonrandomized studies. Rigorous evaluations were performed for radiographic outcomes, including disc height (DH), segmental lordosis (SL), lumbar lordosis (LL), subsidence, and fusion rates. Clinical outcomes were meticulously evaluated using visual analogue scale (VAS), Oswestry Disability Index (ODI), and complications. RESULTS: The analysis incorporated 7 studies, involving 573 patients (297 with banana-shaped cages, 276 with straight cages), all with NOS ratings exceeding 5 stars. No statistically significant differences were observed in operative time, blood loss, or hospitalization between the 2 cage shapes. Banana-shaped cages exhibited greater changes in DH (p = 0.001), SL (p = 0.02), and LL (p = 0.01). Despite statistically higher changes in ODI for straight cages (26.33, p < 0.0001), the actual value remained similar to banana-shaped cages (26.15). Both cage types demonstrated similar efficacy in VAS, complication rates, subsidence, and fusion rates. CONCLUSION: Although banana-shaped cages can excel in restoring DH, SL, and LL, straight bullet cages can provide comparable functional improvements, pain relief, and complication rates.

20.
Inorg Chem ; 63(6): 2853-2876, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38299502

RESUMEN

Quasi-two-dimensional (quasi-2D) perovskites have attracted much attention due to their outstanding properties, such as inherent quantum-well structure, strong dielectric and quantum confinement, large exciton binding energy, and high photoluminescence quantum yield. By virtue of these superior merits, quasi-2D perovskites have shown great potential for next-generation light-emitting diodes (LEDs). Herein, this review presents an overview of the basic properties of quasi-2D perovskites and their photoluminescence modulations by large organic cation engineering, monovalent cation engineering, halogen engineering, defect passivation engineering, and dimensionality engineering. Furthermore, the strategies of charge-transport layer optimization, interfacial engineering, light-outcoupling efficiency improvement, and operating stability improvement are summarized for fabricating high-performance quasi-2D perovskite LEDs (PeLEDs). Finally, the challenges and outlook for the future development of quasi-2D PeLEDs are unambiguously proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA