RESUMEN
Gene therapy offers a promising avenue for treating ischemic diseases, yet its clinical efficacy is hindered by the limitations of single gene therapy and the high oxidative stress microenvironment characteristic of such conditions. Lipid-polymer hybrid vectors represent a novel approach to enhance the effectiveness of gene therapy by harnessing the combined advantages of lipids and polymers. In this study, we engineered lipid-polymer hybrid nanocarriers with tailored structural modifications to create a versatile membrane fusion lipid-nuclear targeted polymer nanodelivery system (FLNPs) optimized for gene delivery. Our results demonstrate that FLNPs facilitate efficient cellular uptake and gene transfection via membrane fusion, lysosome avoidance, and nuclear targeting mechanisms. Upon encapsulating Hepatocyte Growth Factor plasmid (pHGF) and Catalase plasmid (pCAT), HGF/CAT-FLNPs were prepared, which significantly enhanced the resistance of C2C12 cells to H2O2-induced injury in vitro. In vivo studies further revealed that HGF/CAT-FLNPs effectively alleviated hindlimb ischemia-induced gangrene, restored motor function, and promoted blood perfusion recovery in mice. Metabolomics analysis indicated that FLNPs didn't induce metabolic disturbances during gene transfection. In conclusion, FLNPs represent a versatile platform for multi-dimensional assisted gene delivery, significantly improving the efficiency of gene delivery and holding promise for effective synergistic treatment of lower limb ischemia using pHGF and pCAT.
Asunto(s)
Terapia Genética , Isquemia , Lípidos , Polímeros , Animales , Isquemia/terapia , Terapia Genética/métodos , Lípidos/química , Ratones , Polímeros/química , Nanopartículas/química , Factor de Crecimiento de Hepatocito/genética , Línea Celular , Transfección/métodos , Plásmidos/genética , Técnicas de Transferencia de Gen , Masculino , Miembro Posterior/irrigación sanguínea , Catalasa/metabolismoRESUMEN
Ferroptosis contributes to brain injury after germinal matrix hemorrhage (GMH). Mitochondrial ferritin (FTMT), a novel mitochondrial outer membrane protein, reduces oxidative stress in neurodegenerative diseases. In vitro, Deferiprone has been shown to upregulate FTMT. However, the effects of FTMT upregulation by Deferiprone on neuronal ferroptosis after GMH and its underlying mechanism has not been investigated. In our study, 389 Sprague-Dawley rat pups of postnatal day 7 were used to establish a collagenase-induced GMH model and an iron-overload model of intracerebral FeCl2 injection. The brain expressions of FTMT, N-myc downstream-regulated gene-1 (NDGR1), Yes-associated protein (YAP), ferroptosis-related molecules including transferrin receptor (TFR) and acyl-CoA synthase long-chain family member 4 (ACSL4) were increased after GMH. FTMT agonist Deferiprone improved neurological deficits and hydrocephalus after GMH. Deferiprone or Adenovirus-FTMT enhanced YAP phosphorylation at the Ser127 site and attenuated ferroptosis, which was reversed by NDRG1 CRISPR Knockout. Iron overload induced neuronal ferroptosis and neurological deficits, which were improved by YAP CRISPR Knockout. Collectively, FTMT upregulation by Deferiprone reduced neuronal ferroptosis and neurological deficits via the NDRG1/YAP signaling pathway after GMH. Deferiprone may serve as a potential non-invasive treatment for GMH patients.
RESUMEN
The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy. In this study, the stemness and functionality of adipose stem cells derived from type 1 diabetic donors (T1DM-ASC) were enhanced by treatment with Cu(II)-baicalein microflowers (Cu-MON). After treatment with Cu-MON, T1DM-ASC showed enhanced expression of the genes involved in the cytokine-cytokine receptor interaction pathway and increased cytokine secretion. Among the top 13 differentially expressed genes between T1DM-ASC and Cu-MON-treated T1DM-ASC (CMTA), some genes were also expressed in HUVEC, Myoblast, Myofibroblast, and Vascular Smooth Muscle cells, inferring the common role of these cell types. In vivo experiments showed that CMTA had the same therapeutic effect as adipose-derived stem cells from non-diabetic donors (ND-ASC) at a 15% cell dose, greatly reducing the treatment cost. Taken together, these findings suggest that Cu-MON promoted angiogenesis by promoting the stemness and functionality of T1DM-ASC and influencing multiple overall repair processes, including paracrine effects.
RESUMEN
OBJECTIVE: Polyunsaturated fatty acids (PUFAs) have attracted increasing attention for their role in liver cancer development. The objective of this study is to develop a prognosis prediction model for patients with liver cancer based on PUFA-related metabolic gene characteristics. METHOD: Transcriptome data and clinical data were obtained from public databases, while gene sets related to PUFAs were acquired from the gene set enrichment analysis (GSEA) database. Univariate Cox analysis was conducted on the training set, followed by LASSO logistic regression and multivariate Cox analysis on genes with p < .05. Subsequently, the stepwise Akaike information criterion method was employed to construct the model. The high- and low-risk groups were divided based on the median score, and the model's survival prediction ability, diagnostic efficiency, and risk score distribution of clinical features were validated. The above procedures were also validated in the validation set. Immune infiltration levels were evaluated using four algorithms, and the immunotherapeutic potential of different groups was explored. Significant enrichment pathways among different groups were selected based on the GSEA algorithm, and mutation analyses were conducted. Nomogram prognostic models were constructed by incorporating clinical factors and risk scores using univariate and multivariate Cox regression analysis, validated through calibration curves and clinical decision curves. Additionally, sensitivity analysis of drugs was performed to screen potential targeted drugs. RESULTS: We constructed a prognostic model comprising eight genes (PLA2G12A, CYP2C8, ABCCI, CD74, CCR7, P2RY4, P2RY6, and YY1). Validation across multiple datasets indicated the model's favorable prognostic prediction ability and diagnostic efficiency, with poorer grading and staging observed in the high-risk group. Variations in mutation status and pathway enrichment were noted among different groups. Incorporating Stage, Grade, T.Stage, and RiskScore into the nomogram prognostic model demonstrated good accuracy and clinical decision benefits. Multiple immune analyses suggested greater benefits from immunotherapy in the low-risk group. We predicted multiple targeted drugs, providing a basis for drug development. CONCLUSION: Our study's multifactorial prognostic model across multiple datasets demonstrates good applicability, offering a reliable tool for personalized therapy. Immunological and mutation-related analyses provide theoretical foundations for further research. Drug predictions offer important insights for future drug development and treatment strategies. Overall, this study provides comprehensive insights into tumor prognosis assessment and personalized treatment planning.
Asunto(s)
Carcinoma Hepatocelular , Ácidos Grasos Insaturados , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Pronóstico , Masculino , Nomogramas , Femenino , Persona de Mediana Edad , TranscriptomaRESUMEN
As an iron dependent regulatory cell death process driven by excessive lipid peroxides (LPO), ferroptosis is recognized as a powerful weapon for pancreatic cancer (PC) therapy. However, the tumor microenvironment (TME) with hypoxia and elevated glutathione (GSH) expression not only inhibits LPO production, but also induces glutathione peroxidase 4 (GPX4) mediated LPO clearance, which greatly compromise the therapeutic outcomes of ferroptosis. To address these issues, herein, a novel triple-enhanced ferroptosis amplifier (denoted as Zal@HM-PTBC) is rationally designed. After intravenous injection, the overexpressed H2O2/GSH in TME induces the collapse of Zal@HM-PTBC and triggers the production of oxygen and reactive oxygen species (ROS), which synergistically amplify the degree of lipid peroxidation (broaden sources). Concurrently, GSH consumption because of the degradation of the hollow manganese dioxide (HM) significantly weakens the activity of GPX4, resulting in a decrease in LPO clearance (reduce expenditure). Moreover, the loading and site-directed release of zalcitabine further promotes autophagy-dependent LPO accumulation (enhance effectiveness). Both in vitro and in vivo results validated that the ferroptosis amplifier demonstrated superior specificity and favorable therapeutic responses. Overall, this triple-enhanced LPO accumulation strategy demonstrates the ability to facilitate the efficacy of ferroptosis, injecting vigorous vitality into the treatment of PC.
Asunto(s)
Ferroptosis , Glutatión , Peróxidos Lipídicos , Neoplasias Pancreáticas , Ferroptosis/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Animales , Peróxidos Lipídicos/metabolismo , Humanos , Línea Celular Tumoral , Glutatión/metabolismo , Ratones , Compuestos de Manganeso/química , Óxidos/química , Especies Reactivas de Oxígeno/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ratones Endogámicos BALB CRESUMEN
The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.
Asunto(s)
COVID-19 , Pentoxifilina , Síndrome de Dificultad Respiratoria , Animales , Ratones , Humanos , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Edaravona/uso terapéutico , Pandemias , Pulmón , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Citocinas , Concentración de Iones de Hidrógeno , LipopolisacáridosRESUMEN
In recent years, the anticancer effects of disulfiram, a clinical drug for anti-alcoholism, are confirmed. However, several defects limit the clinical translation of disulfiram obviously, such as Cu(II)-dependent anticancer activity, instability, and non-selectivity for cancer cells. Herein, a phosphate and hydrogen peroxide dual-responsive nanoplatform (PCu-HA-DQ) is reported, which is constructed by encapsulating disulfiram prodrug (DQ) and modifying hyaluronic acid (HA) on copper doping metal-organic frameworks (PCu MOFs). PCu-HA-DQ is expected to accumulate in tumor by targeting CD-44 receptors and enable guidance with magnetic resonance imaging. Inside the tumor, Cu(DTC)2 will be generated in situ based on a dual-responsive reaction. In detail, the high concentration of phosphate can induce the release of DQ, after that, the intracellular hydrogen peroxide will further mediate the generation of Cu(DTC)2 . In vitro and in vivo results indicate PCu-HA-DQ can induce the apoptosis as well as immunogenic cell death (ICD) of tumor cells distinctly, leading to enhanced immune checkpoint inhibitor (ICI) efficacy by combining the anti-programmed death-1 antibody. This work provides a portable strategy to construct a dual-responsive nanoplatform integrating tumor-targeted ability and multi-therapy, and the designed nanoplatform is also an ICD inducer, which presents a prospect for boosting systemic antitumor immunity and ICI efficacy.
Asunto(s)
Nanopartículas , Neoplasias , Profármacos , Humanos , Profármacos/uso terapéutico , Disulfiram/uso terapéutico , Muerte Celular Inmunogénica , Cobre/farmacología , Peróxido de Hidrógeno , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Fosfatos , Línea Celular Tumoral , Microambiente Tumoral , Nanopartículas/uso terapéuticoRESUMEN
Germinal matrix hemorrhage (GMH) is a devasting neurological disease in premature newborns. After GMH, brain iron overload associated with hemoglobin degradation contributed to oxidative stress, causing disruption of the already vulnerable blood-brain barrier (BBB). Mitochondrial ferritin (FTMT), a novel mitochondrial outer membrane protein, is crucial in maintaining cellular iron homeostasis. We aimed to investigate the effect of FTMT upregulation on oxidative stress and BBB disruption associated with brain iron overload in rats. A total of 222 Sprague-Dawley neonatal rat pups (7 days old) were used to establish a collagenase-induced GMH model and an iron-overload model of intracerebral FeCl2 injection. Deferiprone was administered via gastric lavage 1 h after GMH and given daily until euthanasia. FTMT CRISPR Knockout and adenovirus (Ad)-FTMT were administered intracerebroventricularly 48 h before GMH and FeCl2 injection, respectively. Neurobehavioral tests, immunofluorescence, Western blot, Malondialdehyde measurement, and brain water content were performed to evaluate neurobehavior deficits, oxidative stress, and BBB disruption, respectively. The results demonstrated that brain expressions of iron exporter Ferroportin (FPN) and antioxidant glutathione peroxidase 4 (GPX4) as well as BBB tight junction proteins including Claudin-5 and Zona Occulta (ZO)-1 were found to be decreased at 72 h after GMH. FTMT agonist Deferiprone attenuated oxidative stress and preserved BBB tight junction proteins after GMH. These effects were partially reversed by FTMT CRISPR Knockout. Iron overload by FeCl2 injection resulted in oxidative stress and BBB disruption, which were improved by Ad-FTMT mediated FTMT overexpression. Collectively, FTMT upregulation is neuroprotective against brain injury associated with iron overload. Deferiprone reduced oxidative stress and BBB disruption by maintaining cellular iron homeostasis partially by the upregulating of FTMT after GMH. Deferiprone may be an effective treatment for patients with GMH.
Asunto(s)
Barrera Hematoencefálica , Sobrecarga de Hierro , Humanos , Recién Nacido , Ratas , Animales , Barrera Hematoencefálica/metabolismo , Animales Recién Nacidos , Ratas Sprague-Dawley , Regulación hacia Arriba , Deferiprona/metabolismo , Deferiprona/farmacología , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/metabolismo , Estrés Oxidativo , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Homeostasis , Ferritinas/metabolismo , Proteínas de Uniones Estrechas/metabolismoRESUMEN
Robust, high-yield integration of nanoscale components such as graphene nanoribbons, nanoparticles, or single-molecules with conventional electronic circuits has proven to be challenging. This difficulty arises because the contacts to these nanoscale devices must be precisely fabricated with angstrom-level resolution to make reliable connections, and at manufacturing scales this cannot be achieved with even the highest-resolution lithographic tools. Here we introduce an approach that circumvents this issue by precisely creating nanometer-scale gaps between metallic carbon electrodes by using a self-aligning, solution-phase process, which allows facile integration with conventional electronic systems with yields approaching 50%. The electrode separation is controlled by covalently binding metallic single-walled carbon nanotube (mCNT) electrodes to individual DNA duplexes to create mCNT-DNA-mCNT nanojunctions, where the gap is precisely matched to the DNA length. These junctions are then integrated with top-down lithographic techniques to create single-molecule circuits that have electronic properties dominated by the DNA in the junction, have reproducible conductance values with low dispersion, and are stable and robust enough to be utilized as active, high-specificity electronic biosensors for dynamic single-molecule detection of specific oligonucleotides, such as those related to the SARS-CoV-2 genome. This scalable approach for high-yield integration of nanometer-scale devices will enable opportunities for manufacturing of hybrid electronic systems for a wide range of applications.
Asunto(s)
Nanotecnología , Nanotubos de Carbono , Nanotecnología/métodos , Electrónica , Nanotubos de Carbono/química , Electrodos , ADNRESUMEN
Despite immunotherapy having revolutionized cancer therapy, the efficacy of immunotherapy in triple-negative breast cancer (TNBC) is seriously restricted due to the insufficient infiltration of mature dendritic cells (DCs) and the highly diffusion of immunosuppressive cells in the tumor microenvironment. Herein, an immunomodulatory nanoplatform (HA/Lipo@MTO@IMQ), in which the DCs could be maximally activated, was engineered to remarkably eradicate the tumor via the combination of suppressive tumor immune microenvironment reversal immunotherapy, chemotherapy, and photothermal therapy. It was noticed that the immunotherapy efficacy could be significantly facilitated by this triple-assistance therapy: First, a robust immunogenic cell death (ICD) effect was induced by mitoxantrone hydrochloride (MTO) to boost DCs maturation and cytotoxic T lymphocytes infiltration. Second, the powerful promaturation property of the toll-like receptor 7/8 (TLR7/8) agonist on DCs simultaneously strengthened the ICD effect and restricted antitumor immunity to the tumor bed and lymph nodes. On this basis, tumor-associated macrophages were also dramatically repolarized toward the antitumor M1 phenotype in response to TLR7/8 agonist to intensify the phagocytosis and reverse the immunosuppressive microenvironment. Furthermore, the recruitment of immunocompetent cells and tumor growth inhibition were further promoted by the photothermal characteristic. The nanoplatform with no conspicuous untoward effects exhibited a splendid ability to activate the systemic immune system so as to increase the immunogenicity of the tumor microenvironment, thus enhancing the tumor killing effect. Taken together, HA/Lipo@MTO@IMQ might highlight an efficient combination of therapeutic modality for TNBC.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Fototérmica , Receptor Toll-Like 7 , Microambiente Tumoral , Factores Inmunológicos , Adyuvantes Inmunológicos , Inmunosupresores , Inmunoterapia , Línea Celular TumoralRESUMEN
Recently, disulfiram (DSF), an anti-alcoholism drug, has attracted increasing biomedical interest due to its anticancer effects. However, the anticancer activity of DSF is Cu(II)-dependent and it is extremely unstable, which severely hinders its clinical translation. Herein, we report the fabrication of a multifunctional nanoplatform (MCDGF) that can improve the stability of diethyldithiocarbamate (DTC), a main metabolite of DSF, by modifying the aryl boronic ester group to form a prodrug (DQ), and also realize the in situ generation of Cu(DTC)2, which relies on a cascade reaction. The delivered Cu/DQ induces immunogenic cell death (ICD) and powerfully enhances immune responses of cytotoxic T lymphocytes (CTLs) and the infiltration of dendritic cells as well as T cells. Furthermore, the grafted glucose oxidase (GOx) decomposes glucose, thus "starving" the cancer cells and providing H2O2 for the production of Cu(DTC)2. More importantly, H2O2 significantly promotes the polarization of macrophages to the anti-tumor subtype. The nano-carrier "mesoporous polydopamine (MPDA)" also displays a good photothermal therapeutic effect. The nanoplatform-integrated chemotherapy, starvation therapy, photothermal therapy, and immunotherapy synergistically stimulated CTL activation and M1 macrophage polarization. Taken together, the as-prepared nanoplatform could regulate the tumor immune microenvironment and eliminate cancer with combined cancer therapy, which will offer a promising strategy for cancer treatment and promote the clinical application of DSF in breast cancer.
Asunto(s)
Neoplasias de la Mama , Neoplasias , Humanos , Femenino , Microambiente Tumoral , Peróxido de Hidrógeno/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Disulfiram/farmacología , Neoplasias/tratamiento farmacológico , CobreRESUMEN
Background: Lung cancer is a global disease with high lethality, with early screening being considerably helpful for improving the 5-year survival rate. Multimodality features in early screening imaging are an important part of the prediction for lung adenocarcinoma, and establishing a model for adenocarcinoma diagnosis based on multimodal features is an obvious clinical need. Through our practice and investigation, we found that graph neural networks (GNNs) are excellent platforms for multimodal feature fusion, and the data can be completed using the edge-generation network. Therefore, we propose a new lung adenocarcinoma multiclassification model based on multimodal features and an edge-generation network. Methods: According to a ratio of 80% to 20%, respectively, the dataset of 338 cases was divided into the training set and the test set through 5-fold cross-validation, and the distribution of the 2 sets was the same. First, the regions of interest (ROIs) cropped from computed tomography (CT) images were separately fed into convolutional neural networks (CNNs) and radiomics processing platforms. The results of the 2 parts were then input into a graph embedding representation network to obtain the fused feature vectors. Subsequently, a graph database based on the clinical and semantic features was established, and the data were supplemented by an edge-generation network, with the fused feature vectors being used as the input of the nodes. This enabled us to clearly understand where the information transmission of the GNN takes place and improves the interpretability of the model. Finally, the nodes were classified using GNNs. Results: On our dataset, the proposed method presented in this paper achieved superior results compared to traditional methods and showed some comparability with state-of-the-art methods for lung nodule classification. The results of our method are as follows: accuracy (ACC) =66.26% (±4.46%), area under the curve (AUC) =75.86% (±1.79%), F1-score =64.00% (±3.65%), and Matthews correlation coefficient (MCC) =48.40% (±5.07%). The model with the edge-generating network consistently outperformed the model without it in all aspects. Conclusions: The experiments demonstrate that with appropriate data=construction methods GNNs can outperform traditional image processing methods in the field of CT-based medical image classification. Additionally, our model has higher interpretability, as it employs subjective clinical and semantic features as the data construction approach. This will help doctors better leverage human-computer interactions.
RESUMEN
Genetic regulatory networks (GRNs) regulate the flow of genetic information from the genome to expressed messenger RNAs (mRNAs) and thus are critical to controlling the phenotypic characteristics of cells. Numerous methods exist for profiling mRNA transcript levels and identifying protein-DNA binding interactions at the genome-wide scale. These enable researchers to determine the structure and output of transcriptional regulatory networks, but uncovering the complete structure and regulatory logic of GRNs remains a challenge. The field of GRN inference aims to meet this challenge using computational modeling to derive the structure and logic of GRNs from experimental data and to encode this knowledge in Boolean networks, Bayesian networks, ordinary differential equation (ODE) models, or other modeling frameworks. However, most existing models do not incorporate dynamic transcriptional data since it has historically been less widely available in comparison to "static" transcriptional data. We report the development of an evolutionary algorithm-based ODE modeling approach (named EA) that integrates kinetic transcription data and the theory of attractor matching to infer GRN architecture and regulatory logic. Our method outperformed six leading GRN inference methods, none of which incorporate kinetic transcriptional data, in predicting regulatory connections among TFs when applied to a small-scale engineered synthetic GRN in Saccharomyces cerevisiae. Moreover, we demonstrate the potential of our method to predict unknown transcriptional profiles that would be produced upon genetic perturbation of the GRN governing a two-state cellular phenotypic switch in Candida albicans. We established an iterative refinement strategy to facilitate candidate selection for experimentation; the experimental results in turn provide validation or improvement for the model. In this way, our GRN inference approach can expedite the development of a sophisticated mathematical model that can accurately describe the structure and dynamics of the in vivo GRN.
Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Teorema de Bayes , Redes Reguladoras de Genes/genética , Evolución Biológica , Candida albicans/genética , ARN MensajeroRESUMEN
As a type of nanomaterials with enzyme-mimetic catalytic properties, nanozymes have attracted wide concern in biological detection. H2O2 was the characteristic product of diverse biological reactions, and the quantitative analysis for H2O2 was an important way to detect disease biomarkers, such as acetylcholine, cholesterol, uric acid and glucose. Therefore, there is of great significance for developing a simple and sensitive nanozyme to detect H2O2 and disease biomarkers by combining with corresponding enzyme. In this work, Fe-TCPP MOFs were successfully prepared by the coordination between iron ions and porphyrin ligands (TCPP). In addition, the peroxidase (POD) activity of Fe-TCPP was proved, in detail, Fe-TCPP could catalyze H2O2 to produce ·OH. Herein, glucose oxidase (GOx) was chosen as the model to build cascade reaction by combining Fe-TCPP to detect glucose. The results indicated glucose could be detected by this cascade system selectively and sensitively, and the limit of detection of glucose was achieved to 0.12 µM. Furthermore, a portable hydrogel (Fe-TCPP@GEL) was further established, which encapsulated Fe-TCPP MOFs, GOx and TMB in one system. This functional hydrogel could be applied for colorimetric detection of glucose by coupling with a smartphone easily.
Asunto(s)
Estructuras Metalorgánicas , Porfirinas , Glucosa/análisis , Peróxido de Hidrógeno , Colorimetría/métodos , Peroxidasas , Biomarcadores , Glucosa OxidasaRESUMEN
To strengthen the antitumor efficacy and avoid toxicity to normal cells of cisplatin and triptolide, herein, an acid and glutathione (GSH) dual-controlled nanoplatform for enhanced cancer treatment through the synergy of both "1+1" apoptosis and "1+1" ferroptosis is designed. Remarkably, ZIF8 in response to tumor microenvironment enhances drug targeting and protects drugs from premature degradation. Meanwhile, the PtIV center can be easily reduced to cisplatin because of the large amount of GSH, thus liberating the triptolide as the coordinated ligand. The released cisplatin and hemin in turn boost the tumor cell "1+1" apoptosis through chemotherapy and photodynamic therapy, respectively. Furthermore, GSH reduction through PtIV weakens the activation of glutathione peroxidase 4 (GPX4) effectively. The released triptolide can inhibit the expressions of GSH by regulating nuclear factor E2 related factor 2 (Nrf2), further promoting membrane lipid peroxidation, thus "1+1" ferroptosis can be achieved. Both in vitro and in vivo results demonstrate that the nanosystem can not only perform superior specificity and therapeutic outcomes but also reduce the toxicity to normal cells/tissues of cisplatin and triptolide effectively. Overall, the prodrug-based smart system provides an efficient therapeutic strategy for cancer treatment by virtue of the effect of enhanced "1+1" apoptosis and "1+1" ferroptosis therapies.
Asunto(s)
Neoplasias de la Mama , Diterpenos , Profármacos , Humanos , Femenino , Cisplatino/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Profármacos/farmacología , Línea Celular Tumoral , Microambiente TumoralRESUMEN
Human bone marrow-derived mesenchymal stem cells (hBMSCs) are promising candidates for stem cell therapy in clinical trials. Applications of hBMSCs in clinical therapy are limited by cellular senescence due to long-term ex vivo expansion. Metformin, an oral hypoglycemic drug for type 2 diabetes, has been shown to have antiaging effects. However, the mechanisms of metformin in antiaging treatment remain controversial. Here, we used D-galactose (D-gal) to establish an appropriate model of senescent hBMSCs to explore the antiaging effects of metformin. Following metformin treatment with a low concentration range, senescence phenotypes induced by D-gal significantly changed, including generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and cell cycle arrest. In contrast, no apparent change was found in unsenescent hBMSCs. Furthermore, the results show that activation of 5'AMP-activated protein kinase (AMPK) by metformin enhances cell autophagy in senescent hBMSCs. These findings suggest that metformin exerts antiaging function within the low concentration range by enhancing autophagy and exhibits potential benefits for clinical stem cell therapy by ameliorating the ex vivo replicative senescence of hBMSCs.
RESUMEN
The emerging event cameras are bio-inspired sensors that can output pixel-level brightness changes at extremely high rates, and event-based visual-inertial odometry (VIO) is widely studied and used in autonomous robots. In this paper, we propose an event-based stereo VIO system, namely ESVIO. Firstly, we present a novel direct event-based VIO method, which fuses events' depth, Time-Surface images, and pre-integrated inertial measurement to estimate the camera motion and inertial measurement unit (IMU) biases in a sliding window non-linear optimization framework, effectively improving the state estimation accuracy and robustness. Secondly, we design an event-inertia semi-joint initialization method, through two steps of event-only initialization and event-inertia initial optimization, to rapidly and accurately solve the initialization parameters of the VIO system, thereby further improving the state estimation accuracy. Based on these two methods, we implement the ESVIO system and evaluate the effectiveness and robustness of ESVIO on various public datasets. The experimental results show that ESVIO achieves good performance in both accuracy and robustness when compared with other state-of-the-art event-based VIO and stereo visual odometry (VO) systems, and, at the same time, with no compromise to real-time performance.
RESUMEN
Ferroptosis has been implicated in the pathogenesis of secondary brain injury following intracerebral hemorrhage (ICH), and regulating this process is considered a potential therapy for alleviating further brain injury. A previous study showed that CDGSH iron sulfur domain 2 (CISD2) can inhibit ferroptosis in cancer. Thus, we investigated the effects of CISD2 on ferroptosis and the mechanisms underlying its neuroprotective role in mice after ICH. CISD2 expression markedly increased after ICH. CISD2 over-expression significantly decreased the number of Fluoro-Jade C-positive neurons and alleviated brain edema and neurobehavioral deficits at 24 h after ICH. In addition, CISD2 over-expression up-regulated the expression of p-AKT, p-mTOR, ferritin heavy chain 1, glutathione peroxidase 4, ferroportin, glutathione, and glutathione peroxidase activity, which are markers of ferroptosis. Additionally, CISD2 over-expression down-regulated the levels of malonaldehyde, iron content, acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and cyclooxygenase-2 at 24 h after ICH. It also alleviated mitochondrial shrinkage and decreased the density of the mitochondrial membrane. Furthermore, CISD2 over-expression increased the number of GPX4-positive neurons following ICH induction. Conversely, knockdown of CISD2 aggravated neurobehavioral deficits, brain edema, and neuronal ferroptosis. Mechanistically, MK2206, an AKT inhibitor, suppressed p-AKT and p-mTOR and reversed the effects of CISD2 over-expression on markers of neuronal ferroptosis and acute neurological outcome. Taken together, CISD2 over-expression alleviated neuronal ferroptosis and improved neurological performance, which may be mediated through the AKT/mTOR pathway after ICH. Thus, CISD2 may be a potential target to mitigate brain injury via the anti-ferroptosis effect after ICH.
Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Edema Encefálico/metabolismo , Peroxidación de Lípido , Hemorragia Cerebral/metabolismo , Lesiones Encefálicas/patología , Serina-Treonina Quinasas TOR/metabolismo , Hierro/metabolismo , Neuronas/metabolismo , Azufre/metabolismo , Azufre/farmacologíaRESUMEN
The therapeutic application of chemodynamic therapy (CDT) is severely limited by the insufficient intracellular H2O2 and acidity in tumor. Herein, an acid-sensitive nanoplatform (ZIF67-ICG/TAM@GOx) to promote H2O2 and acidity enhancement through intracellular cyclic amplification for enhanced CDT is rationally designed. Notably, the acidic conditions of the tumor microenvironment (TME) can turn on the switch of the nanoplatform, setting free the loaded tamoxifen (TAM) and indocyanine green (ICG). The mitochondrial respiration inhibitor TAM and the superoxide dismutase-mimicking ZIF67 synergistically lead to an increase in the content of O2 and H2O2, accelerating the depletion of ß-d-glucose by GOx to generate gluconate and H2O2. The gluconate in turn boosts the acidity to facilitate the collapse of nanoparticles, further significantly promoting the accumulation of intracellular H2O2 through a positive circulation. Consequently, the amplificated endogenous H2O2 is catalyzed by Co2+ to liberate hydroxyl radicals (â¢OH). Besides, ICG-mediated photothermal therapy (PTT) and GOx-induced starvation therapy along with CDT realize the synergistic cancer treatment. Importantly, in vitro and in vivo experiments verified that the nanoplatform performed superior specificity and excellent therapeutic responses. The smart nanoplatform overcomes H2O2 and acidity deficiency simultaneously for intensive CDT, providing new prospects for the development of biocompatible cancer synergistic therapy strategies.
Asunto(s)
Nanopartículas , Neoplasias , Humanos , Peróxido de Hidrógeno , Terapia Fototérmica , Gluconatos , Glucosa , Verde de Indocianina , Tamoxifeno , Microambiente Tumoral , Línea Celular TumoralRESUMEN
Up to now, chemotherapy is still the main strategy for cancer treatment. However, the emergence of chemo-resistance and systemic side effects often seriously affects the treatment and prognosis. Herein, an intelligent nanoplatform based on dendritic mesoporous organosilica nanoparticles (DMON) is constructed. The encapsulated phase-change material, 1-tetradecanol (TD) can serve as a "doorkeeper" and enable the responsive release of drugs based on the temperature changes. Meanwhile, polyethylene glycol (PEG) is used to improve the dispersibility and biocompatibility. Cisplatin is chosen as the model of chemotherapy drug, which is co-loaded with indocyanine green (ICG) in DMON to produce DMON-PEG-cisplatin/ICG-TD (DPCIT). Exciting, the hyperthermia and reactive oxygen species induced by ICG under the NIR-laser irradiation will initiate a phase transition of TD to release cisplatin, thus leading a combined therapy (chemo/photothermal/photodynamic therapy). The results indicated that under laser irradiation, DPCIT can kill cancer cells and inhibit tumor growth efficiently. In addition, the designed nanoplatform reveals minimal systemic toxicity in vivo, in contrast, the distinct liver damage can be observed by the direct treatment of cisplatin. Overall, this research may provide a general approach for the targeted delivery and controlled release of chemotherapy drugs to realize a cooperatively enhanced multimodal tumor therapy.