Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(40): 29606-29623, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39297039

RESUMEN

The treatment of diabetic wounds remains a formidable clinical challenge worldwide. Because of persistent inflammatory reaction, excessive oxidative stress, cell dysfunction, poor blood microcirculation and other microvascular complications, diabetic wounds often fall into inflammatory circulation and are difficult to heal, making patients confront the risk of amputation. In this study, silver complex nanoparticles with Resina Draconis extract and Rhodiola rosea L. extract were loaded in situ onto thermoplastic polyurethane nanofibers to develop a multifunctional electrospun nanofiber wound dressing with excellent mechanical properties, superior water absorption and breathability, good coagulation promoting activity, strong antibacterial performance and antioxidant properties. This wound dressing could effectively enhance the migration and proliferation of fibroblasts, reduce the increased thickness of regenerated epidermis caused by diabetes, and the high expression and high lipid peroxidation levels of IL-1 ß, IL-6, TNF α, iNOS and MMP-9, and raise the low expression of VEGF, which shows great potential to accelerate the wound healing of diabetic mouse models. The wound healing rate reached about 87.92%, close to the non-diabetic group. Our findings suggest a breakthrough in diabetic wound care, offering a viable solution to a long-standing medical shackle.

2.
Cell ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39305902

RESUMEN

m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37040244

RESUMEN

General graph neural networks (GNNs) implement convolution operations on graphs based on polynomial spectral filters. Existing filters with high-order polynomial approximations can detect more structural information when reaching high-order neighborhoods but produce indistinguishable representations of nodes, which indicates their inefficiency of processing information in high-order neighborhoods, resulting in performance degradation. In this article, we theoretically identify the feasibility of avoiding this problem and attribute it to overfitting polynomial coefficients. To cope with it, the coefficients are restricted in two steps, dimensionality reduction of the coefficients' domain and sequential assignment of the forgetting factor. We transform the optimization of coefficients to the tuning of a hyperparameter and propose a flexible spectral-domain graph filter, which significantly reduces the memory demand and the adverse impacts on message transmission under large receptive fields. Utilizing our filter, the performance of GNNs is improved significantly in large receptive fields and the receptive fields of GNNs are multiplied as well. Meanwhile, the superiority of applying a high-order approximation is verified across various datasets, notably in strongly hyperbolic datasets. Codes are publicly available at: https://github.com/cengzeyuan/TNNLS-FFKSF.

4.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674906

RESUMEN

In this study, an antibacterial and shape-memory chitosan cryogel with high blood absorption and fast recovery from non-compressible wounds was prepared using a one-step method. Herein, we prepared a shape-memory-reduced graphene/chitosan (rGO-CTS) cryogel using a one-step method with a frozen mixing solution of chitosan, citric acid, dopamine, and graphene oxide, before treating it with alkaline solutions. The alkaline solution not only promoted the double cross-linking of chitosan but also induced dopamine to form polydopamine-reducing graphene oxide. Scanning electron microscope (SEM) images showed that the rGO-CTS cryogel possessed a uniform porous network structure, attributing excellent water-induced shape-memory properties. Moreover, the rGO-CTS cryogel exhibited good mechanical properties, antibacterial activity, and biocompatibility. In mouse liver trauma models, the rGO-CTS cryogel showed good blood clotting and hemostatic capabilities. Therefore, this composite cryogel has great potential as a new hemostatic material for application to non-compressible wounds.


Asunto(s)
Quitosano , Grafito , Hemostáticos , Ratones , Animales , Quitosano/química , Grafito/farmacología , Grafito/química , Criogeles/química , Dopamina , Modelos Animales de Enfermedad , Antibacterianos/farmacología
5.
Chemosphere ; 259: 127400, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32593002

RESUMEN

Granular activated carbon (GAC) was used as catalyst for the activation of peroxydisulfate (PDS) to decolorize and degrade Acid Orange 7 (AO7) in water. EPR spectra and radical quencher experiments were employed to identify the active species for AO7 oxidation in the PDS/GAC system. Linear sweep voltammetry (LSV) and chronoamperometry test were carried out to identify the contribution of nonradical mechanism for AO7 decay. The investigation of crucial operational parameters on the decolorization indicated 100 mg/L AO7 can be almost totally decolorized in a broad range of pH. Common inorganic anions adversely affect the AO7 decolorization process and the inhibition was in the order of: HCO3- > H2PO4- > SO42- > Cl- > NO3-. UV-vis spectra showed the destruction of the aromatic moiety of AO7 molecule during the oxidation reaction of the PDS/GAC system. The transformation of nitrogen related to the azo bond in AO7 molecule in this system was observed by monitoring the released N-containing inorganic ions. Recycle experiments showed GAC cannot be reused directly but its catalytic ability can be restored by using electrochemical method.


Asunto(s)
Compuestos Azo/química , Sulfatos/química , Contaminantes Químicos del Agua/química , Bencenosulfonatos , Catálisis , Carbón Orgánico/química , Oxidación-Reducción , Reciclaje , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...