Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 13(6): 2310-2333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425066

RESUMEN

Periodontitis is an inflammatory disease caused by bacterial infection directly, and the dysregulation of host immune-inflammatory response finally destroys periodontal tissues. Current treatment strategies for periodontitis mainly involve mechanical scaling/root planing (SRP), surgical procedures, and systemic or localized delivery of antimicrobial agents. However, SRP or surgical treatment alone has unsatisfactory long-term effects and is easy to relapse. In addition, the existing drugs for local periodontal therapy do not stay in the periodontal pocket long enough and have difficulties in maintaining a steady, effective concentration to obtain a therapeutic effect, and continuous administration always causes drug resistance. Many recent studies have shown that adding bio-functional materials and drug delivery systems upregulates the therapeutic effectiveness of periodontitis. This review focuses on the role of biomaterials in periodontitis treatment and presents an overview of antibacterial therapy, host modulatory therapy, periodontal regeneration, and multifunctional regulation of periodontitis therapy. Biomaterials provide advanced approaches for periodontal therapy, and it is foreseeable that further understanding and applications of biomaterials will promote the development of periodontal therapy.

2.
Medicine (Baltimore) ; 101(38): e30678, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36197270

RESUMEN

Hepatocellular carcinoma (HCC) is still a significant global health problem. The development of bioinformatics may provide the opportunities to identify novel therapeutic targets. This study bioinformatically identified the differentially expressed genes (DEGs) in HCC and associated them with HCC prognosis using data from published databases. The DEGs downloaded from the Gene Expression Omnibus (GEO) website were visualized using the Venn diagram software, and then subjected to the GO and KEGG analyses, while the protein-protein interaction network was analyzed using Cytoscape software with the Search Tool for the search tool for the retrieval of interacting genes and the molecular complex detection plug-in. Kaplan-Meier curves and the log rank test were used to associate the core PPI network genes with the prognosis. There were 57 upregulated and 143 downregulated genes in HCC samples. The GO and pathway analyses revealed that these DEGs are involved in the biological processes (BPs), molecular functions (MFs), and cell components (CCs). The PPI network covered 50 upregulated and 108 downregulated genes, and the core modules of this PPI network contained 34 upregulated genes. A total of 28 of these upregulated genes were associated with a poor HCC prognosis, 27 of which were highly expressed in HCC tissues. This study identified 28 DEGs to be associated with a poor HCC prognosis. Future studies will investigate their possible applications as prognostic biomarkers and potential therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Pronóstico
3.
Adv Sci (Weinh) ; 9(10): e2105152, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35138042

RESUMEN

Skin wound repair is a multistage process involving multiple cellular and molecular interactions, which modulate the cell behaviors and dynamic remodeling of extracellular matrices to maximize regeneration and repair. Consequently, abnormalities in cell functions or pathways inevitably give rise to side effects, such as dysregulated inflammation, hyperplasia of nonmigratory epithelial cells, and lack of response to growth factors, which impedes angiogenesis and fibrosis. These issues may cause delayed wound healing or even non-healing states. Current clinical therapeutic approaches are predominantly dedicated to preventing infections and alleviating topical symptoms rather than addressing the modulation of wound microenvironments to achieve targeted outcomes. Bioactive materials, relying on their chemical, physical, and biological properties or as carriers of bioactive substances, can affect wound microenvironments and promote wound healing at the molecular level. By addressing the mechanisms of wound healing from the perspective of cell behaviors, this review discusses how bioactive materials modulate the microenvironments and cell behaviors within the wounds during the stages of hemostasis, anti-inflammation, tissue regeneration and deposition, and matrix remodeling. A deeper understanding of cell behaviors during wound healing is bound to promote the development of more targeted and efficient bioactive materials for clinical applications.


Asunto(s)
Piel , Cicatrización de Heridas , Matriz Extracelular
4.
Adv Sci (Weinh) ; 9(12): e2103875, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35182046

RESUMEN

The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.


Asunto(s)
Regeneración Nerviosa , Nervios Periféricos , Nervios Periféricos/fisiología , Impresión Tridimensional , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...