Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chemosphere ; 355: 141777, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527634

RESUMEN

With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 µg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 µg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/metabolismo , Antioxidantes/metabolismo , Agua/metabolismo , Ecosistema , Carbonilación Proteica , Temperatura , Intestinos , Contaminantes Químicos del Agua/metabolismo , Titanio/farmacología
2.
Environ Pollut ; 331(Pt 2): 121921, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263564

RESUMEN

Anthropologic activities caused frequent eutrophication in coastal and estuarine waters, resulting in diel-cycling hypoxia. Given global climate change, extreme weather events often occur, thus salinity fluctuation frequently breaks out in these waters. This study aimed to evaluate the combined effects of salinity and hypoxia on intestinal microbiota and digestive enzymes of Crassostrea hongkongensis. Specifically, we sequenced 16 S rRNA of intestinal microbiota and measured the digestive enzymes trypsin (TRS), lipase (LPS) and amylase (AMY) in oysters exposed for 28 days to three salinities (10, 25 and 35) and two dissolved oxygen conditions, normoxia (6 mg/L) and hypoxia (6 mg/L for 12 h, 2 mg/L for 12 h). Oysters in normoxia and salinity of 25 were treated as control. After 28-day exposure, for microbial components, Fusobacteriota, Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota comprised the majority for all experimental groups. Compared with the control group, the diversity and structure of intestinal microbiota tended to change in all treated groups. The species richness in C. hongkongensis intestine also changed. It was the most significant that high salinity increased Proteobacteria proportion while low salinity and hypoxia increased Fusobacteriota but decreased Proteobacteria, respectively. Additionally, Actinobacteriota was sensitive and changed under environmental stressor (P < 0.01). The prediction results on intestinal microbiota showed that, all functions of oysters were up-regulated to distinct degrees under low/high salinity with hypoxia. According to the KEGG prediction, cellular processes were more active and energy metabolism upregulated, indicating the adaptation of C. hongkongensis to environmental change. Periodical hypoxia and low/high salinity had complex effect on the digestive enzymes, in which the activity of TRS and LPS decreased while AMY increased. High/low salinity and periodical hypoxia can change the secretion of digestive enzymes and influence intestinal microbial diversity and species richness of C. hongkongensis, deducing the chronic adverse effects on the digestive physiology in long-term exposure.


Asunto(s)
Crassostrea , Microbioma Gastrointestinal , Animales , Crassostrea/metabolismo , Salinidad , Lipopolisacáridos , Hipoxia
3.
Sci Total Environ ; 881: 163499, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37062322

RESUMEN

Nano­titanium dioxide (nTiO2) is a widely used nanomaterial posing potential ecological risk for marine ecosystems that might be enhanced by elevated temperatures such as expected during climate change. nTiO2 may affect benthic filter feeders like mussels through waterborne exposures and via food chain due to the adsorption on/in algae. Mussel byssus are proteinaceous fibers secreted by byssal glands of the mussels for attachment. Byssus production and mechanical properties are sensitive to environmental stressors but the combined effects of warming and nTiO2 on byssus performance of mussels are unclear hampering our understanding of the predation and dislodgement risk of mussels under the multiple stressor scenarios. We explored the effects of a short-term (14-day) single and combined exposures to warming (28 °C) and 100 µg L-1 nTiO2 (including food co-exposure) on the byssus performance of the thick shell mussel Mytilus coruscus. The mechanical strength (measured as the breaking force) of the byssal threads was impaired by warming and nTiO2 (including food co-exposure), but the number and length of the byssal threads were increased. The mRNA expression levels of mussel foot proteins (mfp-3, mfp-5) and pre-collagens (preCOL-D, preCOL-P, preCOL-NG) were up-regulated to varying degrees, with the strongest effects induced by warming. This indicates that the physiological and molecular mechanisms of byssus secretion are plastic. However, downregulation of the mRNA expression of preCOL-D and preCOL-P under the combined warming and nTiO2 exposures indicate the limits of these plasticity mechanisms and suggest that the attachment ability and survival of the mussels may be impaired if the pollution or temperature conditions further deteriorate.


Asunto(s)
Ecosistema , Mytilus , Animales , Exposición Dietética , Mytilus/fisiología , Proteínas , Océanos y Mares , ARN Mensajero
4.
Sci Total Environ ; 851(Pt 1): 158176, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995159

RESUMEN

As a good carrier of contaminants, nanotitanium dioxide (nTiO2) can absorb organic pollutants, producing toxicological effects on organisms. However, the complex effects of nTiO2 with contaminants on marine mussels are still unclear. In this study, we exposed mussels to tris (2-chloropropyl) phosphate (TCPP) 100 µg/L (T1), 0.5 mg/L nTiO2 + 100 µg/L TCPP (T2), 1.0 mg/L nTiO2 + 100 µg/L TCPP (T3) and control (0 nTiO2 + 0 µg/L TCPP) treatments, and assessed the combined effects of TCPP with nTiO2 on the thick-shelled mussel Mytilus coruscus by detecting the activities of gill pyruvate kinase (PK), hexokinase (HK), lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH), also gill acetylcholine (Ach) and muscle lactic acid (LD) contents and gut microbiota after 14-d exposure. Compared with the control group, PK activity was increased significantly, but SDH, LDH activities and LD content were decreased significantly in T1, with the addition of nTiO2, there were not significantly different in T3. However, Ach content in T3 was significantly higher than the control and T1. Moreover, KEGG of the gut microbiota via 16 s rRNA sequencing showed that most pathways returned to the control level in T3. The results showed that TCPP affected the respiratory metabolism of mussels, changed the community structure of intestinal microflora in mussels, and nTiO2 alleviated the toxicity of TCPP. Our study provides new insights for ecological risk assessment of TCPP in bivalves in the complex aquatic environment and the novel role of nTiO2 in regulating the toxicity of TCPP.


Asunto(s)
Microbioma Gastrointestinal , Mytilus , Contaminantes Químicos del Agua , Animales , Acetilcolina , Hexoquinasa/metabolismo , Lactato Deshidrogenasas/metabolismo , Ácido Láctico , Mytilus/metabolismo , Fosfatos/metabolismo , Piruvato Quinasa/metabolismo , Succinato Deshidrogenasa/metabolismo , Titanio/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA