Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743010

RESUMEN

Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.


Asunto(s)
Cuerpos Basales , Cilios , Microtúbulos , Proteínas Protozoarias , Tetrahymena thermophila , Cuerpos Basales/metabolismo , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Unión Proteica , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Tetrahymena thermophila/metabolismo , Tetrahymena thermophila/genética
2.
Anal Chem ; 96(18): 6863-6869, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38656177

RESUMEN

The undergraduate analytical chemistry curriculum serves to equip students with the knowledge and skills for work outside of classroom training. As such, instructors face a challenging task in deciding the breadth and depth of topics for their courses to ensure their syllabi can remain up-to-date with today's needs. We propose that instructors consider covering capillary electrophoresis (CE) and lab-on-a-chip (LOC) technologies in their analytical chemistry courses. Past surveys of the curriculum show a noticeable lack of emphasis on these topics, which we feel is a missed opportunity and one that holds potential for the collective benefit of instructors and students. CE and LOCs are utilized in a diverse array of fields like biochemistry, pharmaceutical production, materials science, and environmental analysis, and their applications are becoming increasingly important amidst the growing movement toward environmentally sustainable practices and green chemistry. They are also more accessible in the analytical chemistry classroom compared with typical benchtop instruments due to the flexibility of their size and cost. This makes them easier to obtain, maintain, and transport for use and demonstration purposes. Additionally, interwoven in these topics are core concepts that are fundamental to analytical chemistry; thus, covering them will inherently reinforce students' understanding of fundamental knowledge. Therefore, we believe increased coverage of CE and LOCs can better prepare undergraduates for modern analytical chemistry work in various industries and fields of research.

3.
Anal Chem ; 96(18): 6947-6957, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38656889

RESUMEN

Life-threatening allergic reactions to food allergens, particularly peanut protein Ara h1, are a growing public health concern affecting millions of people worldwide. Thus, accurate and rapid detection is necessary for allergen labeling and dietary guidance and ultimately preventing allergic incidents. Herein, we present a novel ratiometric fluorescence aptasensor based on multivalent aptamer-encoded DNA flowers (Mul-DNFs) for the high-stability and sensitive detection of allergen Ara h1. The flower-shaped Mul-DNFs were spontaneously packaged using ultralong polymeric DNA amplicons driven by a rolling circle amplification reaction, which contains a large number of Ara h1 specific recognition units and has excellent binding properties. Furthermore, dual-color fluorescence-labeled Mul-DNFs probes were developed by hybridizing them with Cy3- and Cy5-labeled complementary DNA (cDNA) to serve as a ratiometric fluorescence aptasensor platform based on fluorescence resonance energy transfer. Benefiting from the combined merits of the extraordinary synergistic multivalent binding ability of Mul-DNFs, the excellent specificity of the aptamer, and the sensitivity of the ratiometric sensor to avoid exogenous interference. The developed ratiometric aptasensor showed excellent linearity (0.05-2000 ng mL-1) with a limit of detection of 0.02 ng mL-1. Additionally, the developed ratiometric fluorescence aptasensor was utilized for quantifying the presence of Ara h1 in milk, infant milk powder, cookies, bread, and chocolate with recoveries of 95.7-106.3%. The proposed ratiometric aptasensor is expected to be a prospective universal aptasensor platform for the rapid, sensitive, and accurate determination of food and environmental hazards.


Asunto(s)
Alérgenos , Antígenos de Plantas , Aptámeros de Nucleótidos , Transferencia Resonante de Energía de Fluorescencia , Proteínas de la Membrana , Aptámeros de Nucleótidos/química , Alérgenos/análisis , Antígenos de Plantas/análisis , Técnicas Biosensibles/métodos , ADN/química , Animales , Límite de Detección , Glicoproteínas/análisis , Glicoproteínas/química , Colorantes Fluorescentes/química , Proteínas de Plantas/análisis , Proteínas de Plantas/química
4.
Polymers (Basel) ; 16(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38475334

RESUMEN

In this work, the development of a novel method for the detection of mercury (II) ions in wastewater using a mercury ion-imprinted polymer (IIP) combined with a quartz crystal microbalance (QCM) is described. The IIP was successfully synthesized via the polymerization of a of a novel fluorescein- and 2-aminophenol-functionalized methacrylic acid monomer, which was noted to have high binding affinity to mercury (II) ions. This polymer was subsequently coated on a QCM chip to create an IIP-QCM sensor. This sensor was established to have high selectivity and good sensitivity to mercury (II) ions, and had a limit of detection (LOD) of 14.17 ppb, a limit of quantification (LOQ) of 42.94 ppb, a signal-to-noise ratio (S/N) of 4.29, good repeatability, and a working range of 42.94 ppb to 2 ppm. The sensor was also able to analyze tap water and wastewater samples. The IIP-QCM is, therefore, promising as a highly selective, cost-effective, and rapid mercury ion sensor for applications involving the detection of mercury in wastewater.

5.
Chemosphere ; 346: 140557, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303399

RESUMEN

Single-atom nanozymes (SANs) are nanomaterials-based nanozymes with atomically dispersed enzyme-like active sites. SANs offer improved as well as tunable catalytic activity. The creation of extremely effective SANs and their potential uses have piqued researchers' curiosity due to their advantages of cheap cost, variable catalytic activity, high stability, and large-scale production. Furthermore, SANs with uniformly distributed active centers and definite coordination structures offer a distinctive opportunity to investigate the structure-activity correlation and control the geometric and electrical features of metal centers. SANs have been extensively explored in photo-, thermal-, and electro-catalysis. However, SANs suffer from the following disadvantages, such as efficiency, non-mimicking of the 3-D complexity of natural enzymes, limited and narrow range of artificial SANs, and biosafety aspects. Among a quite limited range of artificial SANs, the peroxidase action of SANs has attracted significant research attention in the last five years with the aim of producing reactive oxygen species for use in cancer therapy, and water treatment among many other applications. In this review, we explore the recent progress of different SANs as peroxidase mimics, the role of the metal center in enzymatic activity, possible prospects, and underlying limitations in real-time applications.


Asunto(s)
Materiales Biomiméticos , Nanoestructuras , Materiales Biomiméticos/química , Nanoestructuras/química , Peroxidasa , Catálisis , Peroxidasas
6.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014135

RESUMEN

Basal bodies (BBs) are conserved eukaryotic structures that organize motile and primary cilia. The BB is comprised of nine, cylindrically arranged, triplet microtubules (TMTs) that are connected to each other by inter-TMT linkages which maintain BB structure. During ciliary beating, forces transmitted to the BB must be resisted to prevent BB disassembly. Poc1 is a conserved BB protein important for BBs to resist ciliary forces. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 binding in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. Moreover, we identify a molecular response to ciliary forces via a molecular remodeling of the inner scaffold, as determined by differences in Fam161A localization. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.

7.
J Agric Food Chem ; 71(41): 15097-15105, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37781984

RESUMEN

The relationship between trimethylamine-N-oxide (TMAO), betaine, and choline with acute myocardial infarction (AMI) end point remains unclear. We analyzed plasma TMAO, betaine, and choline concentrations in AMI cases and non-AMI community-dwelling controls by LC-MS/MS to understand how the balance between these metabolites helps to reduce AMI risk. Results showed that the odds ratio (OR) for the highest versus lowest quartiles of betaine was 0.30 (95% CI, 0.10-0.82) after adjustment for AMI risk factors, and the unadjusted OR for quartile 3 versus quartile 1 of TMAO was 2.47 (95% CI, 1.02-6.17) (p < 0.05). The study populations with "high betaine + low TMAO" had a significant protective effect concerning AMI with a multivariable-adjusted OR of 0.20 (95% CI, 0.07-0.55) (p < 0.01). Multivariate linear regression showed that the chronological age was correlated with TMAO concentrations among AMI patients (95% CI, 0.05-3.24, p < 0.01) but not among the controls. This implies a further potential interplay between age and metabolite combination─AMI risk association.


Asunto(s)
Betaína , Infarto del Miocardio , Humanos , Betaína/metabolismo , Colina/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metilaminas/metabolismo , Óxidos
8.
Nanoscale ; 15(32): 13437-13449, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37548042

RESUMEN

Crops are constantly challenged by different environmental conditions. Seed treatment using nanomaterials is a cost-effective and environmentally friendly solution for environmental stress mitigation in crop plants. Here, 56 seed nanopriming treatments are used to alleviate environmental stresses in maize. Seven selected nanopriming treatments significantly increase the stress resistance index (SRI) by 13.9% and 12.6% under salinity stress and combined heat-drought stress, respectively. Metabolomics data reveal that ZnO nanopriming treatment, with the highest SRI value, mainly regulates the pathways of amino acid metabolism, secondary metabolite synthesis, carbohydrate metabolism, and translation. Understanding the mechanism of seed nanopriming is still difficult due to the variety of nanomaterials and the complexity of interactions between nanomaterials and plants. Using the nanopriming data, we present an interpretable structure-activity relationship (ISAR) approach based on interpretable machine learning for predicting and understanding its stress mitigation effects. The post hoc and model-based interpretation approaches of machine learning are integrated to provide complementary advantages and may yield more illuminating or trustworthy results for researchers or policymakers. The concentration, size, and zeta potential of nanoparticles are identified as dominant factors for correlating root dry weight under salinity stress, and their effects and interactions are explained. Additionally, a web-based interactive tool is developed for offering prediction-level interpretation and gathering more details about a specific nanopriming treatment. This work offers a promising framework for accelerating the agricultural applications of nanomaterials and may contribute to nanosafety assessment.


Asunto(s)
Nanopartículas , Nanoestructuras , Estrés Fisiológico , Semillas
9.
Environ Pollut ; 336: 122387, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591324

RESUMEN

Persistent organic pollutants (POPs) accumulated in the adipose tissue can affect the fatty acid and lipid metabolism in the body. Gas chromatography-mass spectrometry (GC-MS) metabolomics analysis was carried out to study the metabolic changes induced by internal exposure to the POPs in mouse skeletal muscle (soleus, plantaris, and gastrocnemius), kidney, heart, and lungs. Male donor mice were injected with a mixture of 10 POPs at concentrations of 0 × and 5 × lowest-observed-adverse-effect level (LOAEL). Their adipose tissue (AT) containing the POP was then grafted onto the host mice and the metabolic change of the host mice was monitored for 3 or 21 days. The metabolites related to fatty acid and lipid metabolism were studied. For the host mice engrafted with POP-containing fat pad, there was dysregulation of the fatty acids and glycerides observed in all the organs studied 3 days after the graft. However, there was no longer a significant change in the metabolites 21 days after the graft. The difference in significant values and metabolite regulation in each of the skeletal muscles showed that the POP mixture affects different types of skeletal muscle in a heterogeneous manner. Fold change analysis showed that certain metabolites in the kidney of host mice exposed to POPs for 3 days were greatly affected. Using multivariate analysis, apart from the plantaris, most treated groups exposed to POPs for 3 days are well distinguished from the control groups. However, for host mice exposed to POPs for 21 days, apart from the kidney and heart, groups are not well-distinguished from the control group. This study helps bring new insight into the effects of the pollutants mixture released from AT on fatty acid and lipid metabolism at different periods and how the dysregulation of metabolites might result in diseases associated with the organs.


Asunto(s)
Contaminantes Ambientales , Masculino , Animales , Ratones , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético , Tejido Adiposo/metabolismo , Riñón/metabolismo , Pulmón
10.
Environ Sci Technol ; 57(34): 12760-12770, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37594125

RESUMEN

Understanding plant uptake and translocation of nanomaterials is crucial for ensuring the successful and sustainable applications of seed nanotreatment. Here, we collect a dataset with 280 instances from experiments for predicting the relative metal/metalloid concentration (RMC) in maize seedlings after seed priming by various metal and metalloid oxide nanoparticles. To obtain unbiased predictions and explanations on small datasets, we present an averaging strategy and add a dimension for interpretable machine learning. The findings in post-hoc interpretations of sophisticated LightGBM models demonstrate that solubility is highly correlated with model performance. Surface area, concentration, zeta potential, and hydrodynamic diameter of nanoparticles and seedling part and relative weight of plants are dominant factors affecting RMC, and their effects and interactions are explained. Furthermore, self-interpretable models using the RuleFit algorithm are established to successfully predict RMC only based on six important features identified by post-hoc explanations. We then develop a visualization tool called RuleGrid to depict feature effects and interactions in numerous generated rules. Consistent parameter-RMC relationships are obtained by different methods. This study offers a promising interpretable data-driven approach to expand the knowledge of nanoparticle fate in plants and may profoundly contribute to the safety-by-design of nanomaterials in agricultural and environmental applications.


Asunto(s)
Metaloides , Semillas , Transporte Biológico , Agricultura , Aprendizaje Automático , Plantones
11.
J Hazard Mater ; 455: 131600, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37182467

RESUMEN

Sewage sludge (SS) is a hazardous by-product of wastewater treatment processes that requires careful management for minimal environmental impacts and effective resource recovery. Through thermochemical processes such as pyrolysis, clean energy is recovered from SS in the form of bio-oil, biogas, and biochar. To improve the yield and quality of products, the co-pyrolysis of more than two materials is increasingly gaining interest. Here, the thermal behaviour, kinetics, and synergistic interactions during the co-pyrolysis of SS with polypropylene (PP) and high-density polyethylene (HDPE) were comparatively evaluated with thermogravimetric analysis at different mixing ratios and heat rates. Activation energies and reaction mechanisms were determined through iso-conversional model-free methods and master plot analysis. Evolved gases were monitored with thermogravimetric-mass spectrometry. Increased volatile conversion and degradation rates, and reduced activation energies during co-pyrolysis were mediated by synergistic interactions between H-radicals of PP/HDPE and oxygenated intermediates of SS. Contrary to the pyrolysis of SS, PP and HDPE, the co-pyrolysis processes are predominantly diffusion-controlled. Insights into the co-pyrolysis processes of SS/PP and SS/HDPE gained from this work provide the theoretical support for subsequent investigation, facilitate design of waste-to-energy reactor, and aid the adoption of the technology to harness the bioenergy potential of the feedstocks.

12.
J Trace Elem Med Biol ; 77: 127148, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905853

RESUMEN

Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Using a validated and efficient ICP-MS/MS-based workflow, a total of 30 metallomic features were profiled in a study comprising 101 AMI patients and 66 age-matched healthy controls. The metallomic features include 12 essential elements (Ca, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, Zn), 8 non-essential/toxic elements (Al, As, Ba, Cd, Cr, Ni, Rb, Sr, U, V), and 10 clinically relevant element-pair product/ratios (Ca/Mg, Ca×P, Cu/Se, Cu/Zn, Fe/Cu, P/Mg, Na/K, Zn/Se). Preliminary linear regression with feature selection confirmed smoking status as a predominant determinant for the non-essential/toxic elements, and revealed potential routes of action. Univariate assessments with adjustments for covariates revealed insights into the ambivalent relationships of Cu, Fe, and P with AMI, while also confirming cardioprotective associations of Se. Also, beyond their roles as risk factors, Cu and Se may be involved in the response mechanism in AMI onset/intervention, as demonstrated via longitudinal data analysis with 2 additional time-points (1-/6-month follow-up). Finally, based on both univariate tests and multivariate classification modelling, potentially more sensitive markers measured as element-pair ratios were identified (e.g., Cu/Se, Fe/Cu). Overall, metallomics-based biomarkers may have utility for AMI prediction.


Asunto(s)
Espectrometría de Masas en Tándem , Oligoelementos , Humanos , Modelos Lineales , Oligoelementos/análisis
13.
Chem Commun (Camb) ; 59(18): 2636-2639, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779275

RESUMEN

Here, we demonstrate a new electrochemical sensing mechanism of ammonium ions (NH4+) involving a two-electron oxygen reduction reaction (ORR) and a hydrazine reaction. The NH4+ are electrooxidized to hydrazine by H2O2 derived from the ORR over a self-supporting Ag/TiO2 nanotube array composite electrode modified by hematite (Ag/Fe2O3/TNTs). The Ag/Fe2O3/TNT sensor exhibits a high sensitivity of 1876 µA mM-1 cm-2 with a detection limit of 0.18 µM under non-alkaline conditions, a short response time of 3 s, good reproducibility, and fine selectivity among various interferents, and is also successfully used in real water bodies to display high accuracy. Furthermore, this new mechanism has a certain universality in a range of Ag (main catalyst)/transition metal oxide (cocatalyst)/TNT sensing systems. This work offers a new design basis for the urgently needed electrochemical ammonia nitrogen sensors.

14.
Bioorg Med Chem ; 79: 117167, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682225

RESUMEN

Pseudomonas aeruginosa is widely attributed as the leading cause of hospital-acquired infections. Due to intrinsic antibiotic resistance mechanisms and the ability to form biofilms, P. aeruginosa infections are challenging to treat. P. aeruginosa employs multiple virulence mechanisms to establish infections, many of which are controlled by the global virulence regulator Vfr. An attractive strategy to combat P. aeruginosa infections is thus the use of anti-virulence compounds. Here, we report the discovery that FDA-approved drug auranofin attenuates virulence pathways in P. aeruginosa, including quorum sensing (QS) and Type IV pili (TFP). We show that auranofin acts via multiple targets, one of which being Vfr. Consistent with inhibition of QS and TFP expression, we show that auranofin attenuates biofilm maturation, and when used in combination with colistin, displays strong synergy in eradicating P. aeruginosa biofilms. Auranofin may have immediate applications as an anti-virulence drug against P. aeruginosa infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Auranofina/farmacología , Auranofina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacología , Factores de Virulencia/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Biopelículas , Percepción de Quorum , Proteínas Bacterianas/farmacología
15.
Adv Fiber Mater ; 5(2): 429-460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36530770

RESUMEN

Rapid industrialization is accompanied by the deterioration of the natural environment. The deepening crisis associated with the ecological environment has garnered widespread attention toward strengthening environmental monitoring and protection. Environmental sensors are one of the key technologies for environmental monitoring, ultimately enabling environmental protection. In recent decades, micro/nanomaterials have been widely studied and applied in environmental sensing owing to their unique dimensional properties. Electrospinning has been developed and adopted as a facile, quick, and effective technology to produce continuous micro- and nanofiber materials. The technology has advanced rapidly and become one of the hotspots in the field of nanomaterials research. Environmental sensors made from electrospun nanofibers possess many advantages, such as having a porous structure and high specific surface area, which effectively improve their performance in environmental sensing. Furthermore, by introducing functional nanomaterials (carbon nanotubes, metal oxides, conjugated polymers, etc.) into electrospun fibers, synergistic effects between different materials can be utilized to improve the catalytic activity and sensitivity of the sensors. In this review, we aimed to outline the progress of research over the past decade on electrospinning nanofibers with different morphologies and functional characteristics in environmental sensors.

16.
Metabolites ; 12(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36355163

RESUMEN

Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. This work aims to investigate the translational potential of a multi-omics study (comprising metabolomics, lipidomics, glycomics, and metallomics) in revealing biomechanistic insights into AMI. Following the N-glycomics and metallomics studies performed by our group previously, untargeted metabolomic and lipidomic profiles were generated and analysed in this work via the use of a simultaneous metabolite/lipid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis workflow. The workflow was applied to blood plasma samples from AMI cases (n = 101) and age-matched healthy controls (n = 66). The annotated metabolomic (number of features, n = 27) and lipidomic (n = 48) profiles, along with the glycomic (n = 37) and metallomic (n = 30) profiles of the same set of AMI and healthy samples were integrated and analysed. The integration method used here works by identifying a linear combination of maximally correlated features across the four omics datasets, via utilising both block-partial least squares-discriminant analysis (block-PLS-DA) based on sparse generalised canonical correlation analysis. Based on the multi-omics mapping of biomolecular interconnections, several postulations were derived. These include the potential roles of glycerophospholipids in N-glycan-modulated immunoregulatory effects, as well as the augmentation of the importance of Ca-ATPases in cardiovascular conditions, while also suggesting contributions of phosphatidylethanolamine in their functions. Moreover, it was shown that combining the four omics datasets synergistically enhanced the classifier performance in discriminating between AMI and healthy subjects. Fresh and intriguing insights into AMI, otherwise undetected via single-omics analysis, were revealed in this multi-omics study. Taken together, we provide evidence that a multi-omics strategy may synergistically reinforce and enhance our understanding of diseases.

17.
Metallomics ; 14(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36271844

RESUMEN

In research enabling preclinical development and attaining a deeper understanding of the behavior of metallodrugs in cancer cells with acquired resistance, intracellular Pt accumulation could be considered an important biomarker and analytical focus. In this work, Pt accumulation patterns in terms of the number of cells and Pt mass in single cells were precisely defined by using inductively coupled plasma-mass spectrometry (ICP-MS) operating in a fast time-resolved analysis mode. This technique is otherwise known as single-cell (SC)-ICP-MS. By applying the nascent and validated SC-ICP-MS technique, comparisons across three Pt drugs (cisplatin, carboplatin, and oxaliplatin) in the A2780 and A2780cis ovarian cancer cell models could be made. Additional roles of transporters on top of passive diffusion and the drugs' bioactivity could be postulated. The SC-ICP-MS-based observations also served as a cross-validation point to augment preexisting research findings on Pt-resistance mechanisms. Conjectures regarding S and Fe metabolism were also derived based on an additional and direct ICP-MS analysis of endogenous elements. Overall, our work not only confirms the utility of SC-ICP-MS in chemotherapeutic research, but also provided insights into further ICP-MS-based analytical capacities to be developed.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/metabolismo , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Oxaliplatino , Antineoplásicos/química
19.
Ann Surg Oncol ; 29(12): 7542-7548, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35849291

RESUMEN

PURPOSE: Gastrointestinal stromal tumor (GIST) is associated with increased risk of additional cancers. In this study, synchronous GIST, and peritoneal mesothelioma (PM) were characterized to evaluate the relationship between these two cancers. METHODS: A retrospective chart review was conducted for patients diagnosed with both GIST and PM between July 2010 and June 2021. Patient demographics, past tumor history, intraoperative reports, cross-sectional imaging, peritoneal cancer index (PCI) scoring, somatic next-generation sequencing (NGS) analysis, and histology were reviewed. RESULTS: Of 137 patients who underwent primary GIST resection from July 2010 to June 2021, 8 (5.8%) were found to have synchronous PM, and 4 patients (50%) had additional cancers and/or benign tumors. Five (62.5%) were male, and the median age at GIST diagnosis was 57 years (range: 45-76). Seventy-five percent of GISTs originated from the stomach. Of the eight patients, one patient had synchronous malignant mesothelioma (MM), and the remaining had well-differentiated papillary mesothelioma (WDPM), which were primarily located in the region of the primary GIST (89%). The median PCI score was 2 in the WDPM patients. NGS of GIST revealed oncogenic KIT exon 11 (62.5%), PDGFRA D842V (25%), or SDH (12.5%) mutations, while NGS of the MM revealed BAP1 and PBRM1 alterations. CONCLUSIONS: One in 17 GIST patients undergoing resection in this series have PM, which is significantly higher than expected if these two diseases were considered as independent events. Our results indicate that synchronous co-occurrence of GIST and PM is an underrecognized finding, suggesting a possible relationship that deserves further investigation.


Asunto(s)
Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Mesotelioma Maligno , Mesotelioma , Neoplasias Peritoneales , Anciano , Femenino , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/cirugía , Humanos , Masculino , Mesotelioma/genética , Mesotelioma/cirugía , Persona de Mediana Edad , Mutación , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/cirugía , Proteínas Proto-Oncogénicas c-kit/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Estudios Retrospectivos
20.
Food Chem ; 393: 133452, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751219

RESUMEN

Glycinebetaine (GB) has long been used as a preservative for refrigerated fruits, but the effect of GB on the global metabolites of cold-stored strawberries is still unclear. In this study, the effects of exogenous application of GB on quality-related metabolites of cold-stored strawberries were investigated by nuclear magnetic resonance (NMR)-based metabolomic analysis. The results showed that the application of GB (especially at the concentration of 10 mM) on cold-stored strawberries effectively stabilized the sugars (d-xylose and d-glucose) and amino acids (tyrosine, leucine, and tryptophan) content, and lowered the acid (acetic acid) content as well. Additionally, the GB content in strawberries also increased. This implies that the appropriate concentration of GB is a natural and safe treatment, which could maintain the quality of cold-stored strawberries by regulating levels of quality-related metabolites, and the ingestion of GB-preserved strawberries may serve as a source of methyl-donor supplementation in our daily diet.


Asunto(s)
Fragaria , Betaína/análisis , Fragaria/química , Frutas/química , Espectroscopía de Resonancia Magnética , Metabolómica , Espectroscopía de Protones por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA