Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exp Lung Res ; 50(1): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419581

RESUMEN

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Hiperoxia/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , ARN Mensajero/metabolismo
2.
MedComm (2020) ; 4(6): e448, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38077250

RESUMEN

Staphylococcus aureus (SA) is a major cause of sepsis, leading to acute lung injury (ALI) characterized by inflammation and oxidative stress. However, the role of the Nrf2/PHB2 pathway in SA-induced ALI (SA-ALI) remains unclear. In this study, serum samples were collected from SA-sepsis patients, and a SA-ALI mouse model was established by grouping WT and Nrf2-/- mice after 6 h of intraperitoneal injection. A cell model simulating SA-ALI was developed using lipoteichoic acid (LTA) treatment. The results showed reduced serum Nrf2 levels in SA-sepsis patients, negatively correlated with the severity of ALI. In SA-ALI mice, downregulation of Nrf2 impaired mitochondrial function and exacerbated inflammation-induced ALI. Moreover, PHB2 translocation from mitochondria to the cytoplasm was observed in SA-ALI. The p-Nrf2/total-Nrf2 ratio increased in A549 cells with LTA concentration and treatment duration. Nrf2 overexpression in LTA-treated A549 cells elevated PHB2 content on the inner mitochondrial membrane, preserving genomic integrity, reducing oxidative stress, and inhibiting excessive mitochondrial division. Bioinformatic analysis and dual-luciferase reporter assay confirmed direct binding of Nrf2 to the PHB2 promoter, resulting in increased PHB2 expression. In conclusion, Nrf2 plays a role in alleviating SA-ALI by directly regulating PHB2 transcription and maintaining mitochondrial function in lung cells.

3.
Theriogenology ; 209: 141-150, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393744

RESUMEN

DNA binding inhibitory factor 3 (ID3) has been shown to have a key role in maintaining proliferation and differentiation. It has been suggested that ID3 may also affect mammalian ovarian function. However, the specific roles and mechanisms are unclear. In this study, the expression level of ID3 in cumulus cells (CCs) was inhibited by siRNA, and the downstream regulatory network of ID3 was uncovered by high-throughput sequencing. The effects of ID3 inhibition on mitochondrial function, progesterone synthesis, and oocyte maturation were further explored. The GO and KEGG analysis results showed that after ID3 inhibition, differentially expressed genes, including StAR, CYP11A1, and HSD3B1, were involved in cholesterol-related processes and progesterone-mediated oocyte maturation. Apoptosis in CC was increased, while the phosphorylation level of ERK1/2 was inhibited. During this process, mitochondrial dynamics and function were disrupted. In addition, the first polar body extrusion rate, ATP production and antioxidation capacity were reduced, which suggested that ID3 inhibition led to poor oocyte maturation and quality. The results will provide a new basis for understanding the biological roles of ID3 as well as cumulus cells.


Asunto(s)
Células del Cúmulo , Oocitos , Oogénesis , Progesterona , Animales , Bovinos , Femenino , Células del Cúmulo/metabolismo , Mamíferos , Mitocondrias , Oocitos/fisiología , Oogénesis/genética , Progesterona/farmacología , Progesterona/metabolismo , Proteínas Inhibidoras de la Diferenciación/metabolismo
4.
Biomedicines ; 11(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37371773

RESUMEN

The malfunction of vascular smooth muscle cells (VSMCs) is an initiating factor in the pathogenesis of pathological vascular remodeling, including hypertension-related vascular lesions. MicroRNAs (miRNAs) have been implicated in the pathogenesis of VSMC proliferation and migration in numerous cases of cardiovascular remodeling. The evidence for the regulatory role of miR-155-5p in the development of the cardiovascular system has been emerging. However, it was previously unclear whether miR-155-5p participated in the migration of VSMCs under hypertensive conditions. Thus, we aimed to define the exact role and action of miR-155-5p in VSMC migration by hypertension. Here, we detected that the level of miR-155-5p was lower in primary VSMCs from spontaneously hypertensive rats (SHRs). Its overexpression attenuated, while its depletion accelerated, the migration and oxidative damage of VSMCs from SHRs. Our dual-luciferase reporter assay showed that miRNA-155-5p directly targeted the 3'-untranslated region (3'-UTR) of BTB and CNC homology 1 (BACH1). The miR-155-5p mimic inhibited BACH1 upregulation in SHR VSMCs. By contrast, the deletion of miR-155-5p further elevated the upregulation of BACH1 in SHR-derived VSMCs. Importantly, the overexpression of miR-155-5p and knockdown of BACH1 had synergistic effects on the inhibition of VSMCs in hypertension. Collectively, miR-155-5p attenuates VSMC migration and ameliorates vascular remodeling in SHRs, via suppressing BACH1 expression.

5.
Genes (Basel) ; 14(2)2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36833217

RESUMEN

(1) Background: DNA double strand breaks (DSBs) are the most serious form of DNA damage that affects oocyte maturation and the physiological state of follicles and ovaries. Non-coding RNAs (ncRNAs) play a crucial role in DNA damage and repair. This study aims to analyze and establish the network of ncRNAs when DSB occurs and provide new ideas for next research on the mechanism of cumulus DSB. (2) Methods: Bovine cumulus cells (CCs) were treated with bleomycin (BLM) to construct a DSB model. We detected the changes of the cell cycle, cell viability, and apoptosis to determine the effect of DSBs on cell biology, and further evaluated the relationship between the transcriptome and competitive endogenous RNA (ceRNA) network and DSBs. (3) Results: BLM increased γH2AX positivity in CCs, disrupted the G1/S phase, and decreased cell viability. Totals of 848 mRNAs, 75 long noncoding RNAs (lncRNAs), 68 circular RNAs (circRNAs), and 71 microRNAs (miRNAs) in 78 groups of lncRNA-miRNA-mRNA regulatory networks, 275 groups of circRNA-miRNA-mRNA regulatory networks, and five groups of lncRNA/circRNA-miRNA-mRNA co-expression regulatory networks were related to DSBs. Most differentially expressed ncRNAs were annotated to cell cycle, p53, PI3K-AKT, and WNT signaling pathways. (4) Conclusions: The ceRNA network helps to understand the effects of DNA DSBs activation and remission on the biological function of CCs.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Femenino , Animales , Bovinos , Roturas del ADN de Doble Cadena , ARN Circular/genética , ARN Largo no Codificante/genética , Células del Cúmulo/metabolismo , Fosfatidilinositol 3-Quinasas/genética , MicroARNs/genética , ARN Mensajero/genética , ADN
6.
Vet Med Sci ; 9(1): 326-335, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446749

RESUMEN

BACKGROUND: T-box transcription factor 2 (TBX2) is a member of T-box gene family whose members are highly conserved in evolution and encoding genes and are involved in the regulation of developmental processes. The encoding genes play an important role in growth and development. Although TBX2 has been widely studied in cancer cell growth and development, its biological functions in bovine cumulus cells remain unclear. OBJECTIVES: This study aimed to investigate the regulatory effects of TBX2 in bovine cumulus cells. METHODS: TBX2 gene was knockdown with siRNA to clarify the function in cellular physiological processes. Cell proliferation and cycle changes were determined by xCELLigence cell function analyzer and flow cytometry. Mitochondrial membrane potential and autophagy were detected by fluorescent dye staining and immunofluorescence techniques. Western blot and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to detect the expression changes of proliferation and autophagy-related proteins. Aadenosine triphosphate (ATP) production, glucose metabolism, and cholesterol synthesis of cumulus cells were measured by optical density and chemiluminescence analysis. RESULTS: After inhibition of TBX2, the cell cycle was disrupted. The levels of apoptosis, ratio of light chain 3 beta II/I, and reactive oxygen species were increased. The proliferation, expansion ability, ATP production, and the amount of cholesterol secreted by cumulus cells were significantly decreased. CONCLUSIONS: TBX2 plays important roles in regulating the cells' proliferation, expansion, apoptosis, and autophagy; maintaining the mitochondrial function and cholesterol generation of bovine cumulus cells.


Asunto(s)
Autofagia , Células del Cúmulo , Femenino , Animales , Bovinos , Células del Cúmulo/metabolismo , Proliferación Celular , Apoptosis/genética , Mitocondrias , Colesterol/metabolismo , Colesterol/farmacología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología
7.
Food Funct ; 13(20): 10724-10736, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36177734

RESUMEN

Intrauterine growth restriction (IUGR), one of the major complications of pregnancy, is characterized by low birth weight and results in higher risks for long-term problems including developing metabolic and cardiovascular diseases. Short-chain fatty acids (SCFAs), especially propionate, have been reported to correct glucose and lipid disorders in metabolic diseases. We hypothesized that maternal propionate supplementation could prevent glucose and lipid metabolic disturbance in hypoxia-induced IUGR. Here, in our study, maternal hypoxia was induced from gestational day (GD) 11 to GD 17.5 to establish an IUGR mouse model. Maternal propionate treatment reversed reduced birth weight in male IUGR offspring. Hepatic transcriptomics demonstrated that SP treatment significantly lowered glucose and lipid metabolism-related genes (Scd1, G6pc, Pck1 and Fasl) in IUGR offspring. KOG enrichment analysis showed that propionate-induced down-regulated differential expressed genes (DEGs) mainly belonged to lipid transport and metabolism. KEGG enrichment results showed that the down-regulated DEGs were mostly enriched in PPAR and FoxO signaling pathways. We also found that maternal oral administration of SP decreased serum lipid content, attenuated hepatic insulin resistance and liver lipid accumulation, reduced hepatic key gene expressions of gluconeogenesis and lipogenesis, increased energy expenditure and improved liver function in 11-week-old male IUGR offspring. These results indicate that maternal propionate supplementation increases birth weight and corrects hepatic glucose and lipid metabolic disturbance and energy expenditure in male mice born with IUGR, which may provide a basis for using propionate to treat IUGR disease.


Asunto(s)
Retardo del Crecimiento Fetal , Glucosa , Animales , Peso al Nacer , Suplementos Dietéticos , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/metabolismo , Glucosa/metabolismo , Humanos , Hipoxia/tratamiento farmacológico , Hígado/metabolismo , Masculino , Ratones , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Embarazo , Propionatos/metabolismo
8.
J Reprod Dev ; 66(6): 555-562, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33055461

RESUMEN

Carnosic acid (CA), a natural catechol rosin diterpene, is used as an additive in animal feeds and human foods. However, the effects of CA on mammalian reproductive processes, especially early embryonic development, are unclear. In this study, we added CA to parthenogenetically activated porcine embryos in an in vitro culture medium to explore the influence of CA on apoptosis, proliferation, blastocyst formation, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial membrane potential, and embryonic development-related gene expression. The results showed that supplementation with 10 µM CA during in vitro culture significantly improved the cleavage rates, blastocyst formation rates, hatching rates, and total numbers of cells of parthenogenetically activated porcine embryos compared with no supplementation. More importantly, supplementation with CA also improved GSH levels and mitochondrial membrane potential, reduced natural ROS levels in blastomeres, upregulated Nanog, Sox2, Gata4, Cox2, Itga5, and Rictor expression, and downregulated Birc5 and Caspase3 expression. These results suggest that CA can improve early porcine embryonic development by regulating oxidative stress. This study elucidates the effects of CA on early embryonic development and their potential mechanisms, and provides new applications for improving the quality of in vitro-developed embryos.


Asunto(s)
Abietanos/farmacología , Desarrollo Embrionario/efectos de los fármacos , Especies Reactivas de Oxígeno , Animales , Apoptosis , Blastocisto/citología , Proliferación Celular , Medios de Cultivo , Técnicas de Cultivo de Embriones , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glutatión/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Potencial de la Membrana Mitocondrial , Estrés Oxidativo , Partenogénesis , Embarazo , Preñez , Porcinos
9.
Front Cell Dev Biol ; 8: 592433, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33409275

RESUMEN

Imperatorin (IMP) exhibits a variety of pharmacological properties, including antioxidant, anti-inflammatory, antibacterial, anti-cancer, and anti-hypertension activities. However, its effects on animal reproduction systems, especially oocyte development, maturation, and aging are not yet clear. In this study, the effects of IMP on oocyte development and aging as well as the underlying molecular mechanisms were explored. Oocytes were cultured for an additional 24 h for aging. Results revealed that the blastocyst formation and hatching rates of embryos, which were parthenogenetically activated aged oocytes, were significantly increased with IMP treatment (40 µM). Simultaneously, well-distributed cortical granules but no significant difference in zona pellucida hardness were observed after IMP treatment. During this stage, intracellular reactive oxygen species, apoptosis, and autophagy levels were decreased, while mitochondrial membrane potential, glutathione level, and activity of superoxide dismutase and catalase were increased. IMP-treated aged oocytes also showed significantly higher expression of MOS, CCNB1, BMP15, and GDF9 than non-IMP-treated aged oocytes although their levels were still lower than those in the fresh oocytes. These results suggest that IMP can effectively ameliorate the quality of aged porcine oocytes by reducing oxidative stress and protecting mitochondrial function.

10.
Ying Yong Sheng Tai Xue Bao ; 31(12): 4080-4090, 2020 Dec.
Artículo en Chino | MEDLINE | ID: mdl-33393245

RESUMEN

Analyzing the characteristics of spatial-temporal evolution of habitat quality caused by land use change can provide a scientific basis for the coordinated development of regional ecological economy. With Fujian Province (the ecological civilization demonstration area of China) as an example,the InVEST model was used to evaluate the habitat quality based on the land use change data from 1980 to 2018. Further, the influencing factors were analyzed through Geodetector, and the spatial-temporal characteristics of habitat quality was analyzed by combining with the change of land use type. The results showed that the main land use change types included farmland translating to forest land and construction land, forest land translating to farmland, grassland and construction land, and grassland translating to forest land, which accounted for 8.4%, 14.5%, 7.6%, 17.1%, 6.4% and 31.7% of the total land use change, respectively. From 1980 to 2018, the overall habitat quality of Fujian Province was at a high level (0.6-0.8), showing a trend of habitat degradation and habitat quality reduction. The first leading factor for the spatial variation of habitat quality was the change of land use type, with the impact of socioeconomic factors on the habitat quality of coastal counties and cities being significantly higher than that of the entire region and inland counties and cities. The rapid encroachment of construction land on the surrounding forest and grassland accele-rated the degradation of habitat in coastal areas, the process of which was irreversible. The habitat degradation of central urban areas would undergo a similar process in inland area, but might be slower than coastal area in terms of speed and scale. In the long term, the speed of habitat degradation could be slowed by controlling the scale of cities, developing urban ecological greening, and buil-ding an ecological security pattern.


Asunto(s)
Ecosistema , Bosques , China , Ciudades , Conservación de los Recursos Naturales
11.
ScientificWorldJournal ; 2014: 564137, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25097881

RESUMEN

In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal.


Asunto(s)
Dedos/fisiología , Modelos Teóricos , Robótica/métodos , Simulación por Computador , Humanos , Robótica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA