Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
1.
Chem Commun (Camb) ; 60(59): 7618-7621, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38957037

RESUMEN

A nonlinear two-photon excited fluorescence photocatalytic system was constructed for the first time by integrating (ZnO)1-x(GaN)x photocatalyst and a fluorescence solution of phenanthridine derivatives. This work offers a strategy for increasing the photocatalytic solar spectral utilization rate and boosting the expectation for photocatalytic solar-to-hydrogen efficiencies.

2.
J Dairy Sci ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004128

RESUMEN

This study aimed to evaluate the effects of dietary supplementation with different types of Saccharomyces cerevisiae fermentation products (SCFP) on lactational performance, metabolism, acute phase protein response, and antioxidant capacities in dairy cows from -21 to 56 d in milk (DIM). One hundred and 80 multiparous Holstein dairy cows were blocked by parity, expected calving date, pre-trial body condition score, and previous 305-d ME yield, and then randomly assigned to 1 of 3 dietary treatments: basal diet (CON; n = 60), basal diet supplemented with 40 g/d of SCFP1 (XPC; n = 60; XPC, Diamond V, Cedar Rapids, IA), and basal diet supplemented with 19 g/d of SCFP2 (NTK; n = 60, NutriTek®, Diamond V, Cedar Rapids, IA). Blood (n = 15, 13 and 12 in the CON, XPC and NTK groups, respectively) was sampled at -7 ± 3, + 3, + 7, + 21, and + 28 d, and milk samples (n = 19, 18 and 15 in the CON, XPC and NTK groups, respectively) was sampled during 1-8 wk from a subset of cows from -21 to 56 d relative to calving. Data were analyzed using the MIXED procedure in SAS (SAS Institute Inc.). All data were subjected to repeated measures ANOVA. Dietary treatment (TRT), time, and their interaction (TRT × time) were considered as fixed effects and cow as the random effect. Cows fed XPC and NTK had greater energy-corrected milk (ECM). Supplementing NTK increased milk fat content and yield, and 3.5% fat-corrected milk (FCM) yield compared with CON. Milk urea nitrogen (MUN) was lower in XPC cows than CON. SCFP supplementation decreased plasma ß-hydroxybutyrate (BHB), ceruloplasmin (CER), haptoglobin (HPT), and interleukin-1ß (IL-1ß) concentrations, whereas increased plasma phosphorus (P) concentrations. In addition, cows fed NTK showed lower creatinine (CR) and cortisol (COR) concentrations but increased plasma calcium (Ca) and myeloperoxidase (MPO) concentrations than those in the CON cows. In addition, cows fed NTK and XPC both had reduced plasma concentrations of serum amyloid-A (SAA) at 3 DIM of lactation compared with CON fed cows. Furthermore, SCFP cows had greater concentrations of plasma glucose (GLU) and calcium (Ca) than CON cows at 7 DIM, and greater concentrations of plasma phosphorus (P) at 21 DIM. Between different SCFP type fed groups, plasma concentrations of nonesterified fatty acids (NEFA), MDA, creatinine (CR), SAA, and HPT were lower in cows fed NTK compared with cows fed XPC at 7 DIM. Overall, our results indicate the potential benefits of supplementing SCFP in transition dairy cows by modulating immunity, liver metabolic function and supporting ECM yield. The results also suggest that NutriTek at 19 g/d appears to support the performance and health of dairy cows better compared with XPC at 40 g/d, based on improved metabolic and inflammatory status during the transition period.

3.
Front Vet Sci ; 11: 1357738, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846789

RESUMEN

Introduction: Dairy industry growth faces challenges in China due to inadequate forage, leading to high-concentrate diets and potential rumen issues. Buffering agents, like sodium bicarbonate, play a crucial role in stabilizing rumen pH. Alkaline Mineral Complex (AMC), a liquid additive with a pH of 14, shows promise in supporting dairy cow health and mitigating heat stress through ionization. Methods: This experiment was aimed to study the effect of adding AMC to total mixed ration (TMR) on in vitro ruminal fermentation and bacterial composition. AMCat 1, 2, 4, and 8 mL/kg was added to the substrate (0.5 g TMR). Nutrient digestibility was measured after 48 h fermentation, and fermentation parameters and microbial composition were measured after 48 h fermentation. Results and discussion: The results of the experiment indicated that: The different concentrations of AMC showed a significant impact on time taken for gas production to reach 1/2 of the total gas production (HT) parameters (p < 0.05). Linear pH increase occurs at 6 and 24 h with rising AMC concentration (p < 0.05), showing a quadratic trend at 12 h (p < 0.05). The optimal buffering effect on rumen acid-base balance was observed at a 2 mL/kg concentration of AMC. Microbial diversity analysis indicated that there was no significant change in α-diversity with different AMC concentrations (p > 0.05). The microbial level demonstrated no significant difference in species diversity of rumen fluid bacteria among the various AMC concentration treatment groups compared to the control group, further supporting that the advantage of adding AMC in stabilizing the rumen environment without altering the structure of the rumen microbiota. Besides, the addition of AMC significantly increased the concentrations of acetate, propionate, total fatty acids (TVFA), and NH3-N, suggesting that AMC contributed to enhancing the energy and nitrogen utilization efficiency in ruminants. Based on the above detection indicators, we recommend that the most favorable concentration is 2 mL/kg.

4.
Ultrasound Int Open ; 10: a23370078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938987

RESUMEN

Purpose To introduce the cranial-dorsal-hip angle (∠CDH) as a novel quantitative tool for assessing fetal position in the first trimester and to validate its feasibility for future AI applications. Materials and Methods 2520 first-trimester fetal NT exams with 2582 CRL images (January-August 2022) were analyzed at a tertiary hospital as the pilot group. Additionally, 1418 cases with 1450 fetal CRL images (September-December 2022) were examined for validation. Three expert sonographers defined a standard for fetal positions. ∠CDH measurements, conducted by two ultrasound technicians, were validated for consistency using Bland-Altman plots and the intra-class correlation coefficient (ICC). This method allowed for categorizing fetal positions as hyperflexion, neutral, and hyperextension based on ∠CDH. Comparative accuracy was assessed against Ioannou, Wanyonyi, and Roux methods using the weighted Kappa coefficient (k value). Results The pilot group comprised 2186 fetal CRL images, and the validation group included 1193 images. Measurement consistency was high (ICCs of 0.993; P<0.001). The established 95% reference range for ∠CDH in the neutral fetal position was 118.3° to 137.8°. The ∠CDH method demonstrated superior accuracy over the Ioannou, Wanyonyi, and Roux methods in both groups, with accuracy rates of 94.5% (k values: 0.874, 95%CI: 0.852-0.896) in the pilot group, and 92.6% (k values: 0.838, 95%CI: 0.806-0.871) in the validation group. Conclusion The ∠CDH method has been validated as a highly reproducible and accurate technique for first-trimester fetal position assessment. This sets the stage for its potential future integration into intelligent assessment models.

5.
Antioxidants (Basel) ; 13(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38929089

RESUMEN

Oxidative stress damage in periparturient cows decreases both production and their health; supplementation with complex additives during the periparturient period has been used as an important strategy to enhance the antioxidant status and production of dairy cows. The periparturient cows not only risk a negative energy balance due to reduced dry matter intake but also represent a sensitive period for oxidative stress. Therefore, we have developed an immunomodulatory and nutritional regulation combined additive (INC) that hopefully can improve the immune status and production of cows during the periparturient period and their offspring health and growth by improving their antioxidant stress status. The INC comprised a diverse array of additives, including water-soluble and fat-soluble vitamins, Selenomethionine, and active dry Saccharomyces cerevisiae. Forty-five multiparous Holstein cows were randomly assigned to three treatments: CON (no INC supplementation, n = 15), INC30 (30 g/d INC supplementation, n = 15), and INC60 (60 g/d INC supplementation, n = 15) based on last lactation milk yield, body condition score, and parity. Newborn calves were administered 4 L of maternal colostrum originating from the corresponding treatment and categorized based on the treatment received by their respective dams. The INC not only served to maintain the antioxidative stress system of dairy cows during the periparturient period but also showed a tendency to improve the immune response (lower tumor necrosis factor and interleukin-6) during the perinatal period. A linear decrease in concentrations of alkaline phosphatase postpartum and ß-hydroxybutyrate was observed with INC supplementation. Milk fat yield, milk protein yield, and energy-corrected milk yield were also increased linearly with increasing additive supplementation. Calves in the INC30 group exhibited greater wither height and chest girth but no significant effect on average daily gain or body weight. The diarrhea frequency was linearly decreased with the incremental level of INC. Results indicate that supplementation with INC in peripartum dairy cows could be a major strategy to improve immune response, decrease inflammation, maintain antioxidant stress status in transition dairy cows, and have merit in their calves. In conclusion, this study underlines the benefits of INC supplementation during the transition period, as it improved anti-inflammatory capacity, could positively impact antioxidative stress capacity, and eventually enhanced the production performance of dairy cows and the health and growth of calves.

6.
Front Microbiol ; 15: 1336278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803375

RESUMEN

Introduction: The aim of this study was to investigate the effects of diets on the composition and function of rumen microbiome and metabolites in Sanhe heifers. Methods: Metagenomic and metabolomic analyses were performed using rumen fluid samples collected from Sanhe heifers (n = 20) with similar body weights and ages from grass-fed and grain-fed systems. Results: The grain-fed group exhibited more intensive rumen fermentation than the grass-fed group. However, the grass-fed group exhibited carbohydrate metabolism and methane production higher than that of the grain-fed group; these increases were observed as a higher abundance of various bacterial phyla (Firmicutes, Bacteroidetes, Actinobacteria, Lentisphaerae, and Verrucomicrobia), families (Lachnospiraceae, Eubacteriaceae, and Eggerthellaceae), and the archaeal family Methanobacteriaceae. A comparison of genes encoding carbohydrate-active enzymes, using Kyoto Encyclopedia of Genes and Genome profiles, revealed noteworthy differences in the functions of rumen microbiota; these differences were largely dependent on the feeding system. Conclusion: These results could help manipulate and regulate feed efficiency in Sanhe cattle.

7.
BMC Med Inform Decis Mak ; 24(1): 128, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773456

RESUMEN

BACKGROUND: Accurate segmentation of critical anatomical structures in fetal four-chamber view images is essential for the early detection of congenital heart defects. Current prenatal screening methods rely on manual measurements, which are time-consuming and prone to inter-observer variability. This study develops an AI-based model using the state-of-the-art nnU-NetV2 architecture for automatic segmentation and measurement of key anatomical structures in fetal four-chamber view images. METHODS: A dataset, consisting of 1,083 high-quality fetal four-chamber view images, was annotated with 15 critical anatomical labels and divided into training/validation (867 images) and test (216 images) sets. An AI-based model using the nnU-NetV2 architecture was trained on the annotated images and evaluated using the mean Dice coefficient (mDice) and mean intersection over union (mIoU) metrics. The model's performance in automatically computing the cardiac axis (CAx) and cardiothoracic ratio (CTR) was compared with measurements from sonographers with varying levels of experience. RESULTS: The AI-based model achieved a mDice coefficient of 87.11% and an mIoU of 77.68% for the segmentation of critical anatomical structures. The model's automated CAx and CTR measurements showed strong agreement with those of experienced sonographers, with respective intraclass correlation coefficients (ICCs) of 0.83 and 0.81. Bland-Altman analysis further confirmed the high agreement between the model and experienced sonographers. CONCLUSION: We developed an AI-based model using the nnU-NetV2 architecture for accurate segmentation and automated measurement of critical anatomical structures in fetal four-chamber view images. Our model demonstrated high segmentation accuracy and strong agreement with experienced sonographers in computing clinically relevant parameters. This approach has the potential to improve the efficiency and reliability of prenatal cardiac screening, ultimately contributing to the early detection of congenital heart defects.


Asunto(s)
Cardiopatías Congénitas , Ultrasonografía Prenatal , Humanos , Cardiopatías Congénitas/diagnóstico por imagen , Ultrasonografía Prenatal/métodos , Femenino , Embarazo , Corazón Fetal/diagnóstico por imagen , Corazón Fetal/anatomía & histología
8.
Cerebellum ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607531

RESUMEN

This was a study of 12 cerebellar cortical dysplasias (CCDs) fetuses, these cases were characterized by a disorder of cerebellar fissures. Historically, CCD diagnosis was primarily performed using postnatal imaging. Unique to this study was the case series of CCD for prenatal diagnosis using prenatal ultrasound, as well as we found that AXIN1 and FOXC1 mutations may be related to CCD.

9.
Front Microbiol ; 15: 1332497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585704

RESUMEN

Mastitis causes significant losses in the global dairy industry, and the health of animals has been linked to their intestinal microbiota. To better understand the relationship between gastrointestinal microbiota and mastitis in dairy cows, we collected blood, rumen fluid, and fecal samples from 23 dairy cows, including 13 cows with mastitis and 10 healthy cows. Using ELISA kit and high-throughput sequencing, we found that cows with mastitis had higher concentrations of TNF-α, IL-1, and LPS than healthy cows (p < 0.05), but no significant differences in microbiota abundance or diversity (p > 0.05). Principal coordinate analysis (PCOA) revealed significant differences in rumen microbial structure between the two groups (p < 0.05), with Moryella as the signature for rumen in cows with mastitis. In contrast, fecal microbial structure showed no significant differences (p > 0.05), with Aeriscardovia, Lactococcus, and Bacillus as the signature for feces in healthy cows. Furthermore, the results showed distinct microbial interaction patterns in the rumen and feces of cows with mastitis compared to healthy cows. Additionally, we observed correlations between the microbiota in both the rumen and feces of cows and blood inflammatory indicators. Our study sheds new light on the prevention of mastitis in dairy cows by highlighting the relationship between gastrointestinal microbiota and mastitis.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38648141

RESUMEN

Accurate recognition of fetal anatomical structure is a pivotal task in ultrasound (US) image analysis. Sonographers naturally apply anatomical knowledge and clinical expertise to recognizing key anatomical structures in complex US images. However, mainstream object detection approaches usually treat each structure recognition separately, overlooking anatomical correlations between different structures in fetal US planes. In this work, we propose a Fetal Anatomy Reasoning Network (FARN) that incorporates two kinds of relationship forms: a global context semantic block summarized with visual similarity and a local topology relationship block depicting structural pair constraints. Specifically, by designing the Adaptive Relation Graph Reasoning (ARGR) module, anatomical structures are treated as nodes, with two kinds of relationships between nodes modeled as edges. The flexibility of the model is enhanced by constructing the adaptive relationship graph in a data-driven way, enabling adaptation to various data samples without the need for predefined additional constraints. The feature representation is further enhanced by aggregating the outputs of the ARGR module. Comprehensive experimental results demonstrate that FARN achieves promising performance in detecting 37 anatomical structures across key US planes in tertiary obstetric screening. FARN effectively utilizes key relationships to improve detection performance, demonstrates robustness to small-scale, similar, and indistinct structures, and avoids some detection errors that deviate from anatomical norms. Overall, our study serves as a resource for developing efficient and concise approaches to model inter-anatomy relationships.

11.
Cell Metab ; 36(4): 725-744, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569470

RESUMEN

Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Humanos , Promoción de la Salud , Estado Nutricional , Antibacterianos , Probióticos/farmacología , Probióticos/uso terapéutico
12.
Animals (Basel) ; 14(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38672400

RESUMEN

This examined the effects of Lonicera japonica extract (LJE) with different chlorogenic acid (CGA) contents on lactation performance, antioxidant status and immune function and rumen fermentation in heat-stressed high-yielding dairy cows. In total, 45 healthy Chinese Holstein high-yielding dairy cows, all with similar milk yield, parity, and days in milk were randomly allocated to 3 groups: (1) the control group (CON) without LJE; (2) the LJE-10% CGA group, receiving 35 g/(d·head) of LJE-10% CGA, and (3) the LJE-20% CGA group, receiving 17.5 g/(d·head) of LJE-20% CGA. The results showed that the addition of LJE significantly reduced RT, and enhanced DMI, milk yield, milk composition, and improved rumen fermentation in high-yielding dairy cows experiencing heat stress. Through the analysis of the serum biochemical, antioxidant, and immune indicators, we observed a reduction in CREA levels and increased antioxidant and immune function. In this study, while maintaining consistent CGA content, the effects of addition from both types of LJE are similar. In conclusion, the addition of LJE at a level of 4.1 g CGA/(d·head) effectively relieved heat stress and improved the lactation performance of dairy cows, with CGA serving as the effective ingredient responsible for its anti-heat stress properties.

13.
Antioxidants (Basel) ; 13(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38539856

RESUMEN

Tomato is the vegetable with the largest greenhouse area in China, and low temperature is one of the main factors affecting tomato growth, yield, and quality. Hydrogen sulfide (H2S) plays an important role in regulating plant chilling tolerance, but its downstream cascade reaction and mechanism remain unclear. Mitogen-activated protein kinases (MAPK/MPKs) are closely related to a variety of signaling substances in stress signal transmission. However, whether H2S is related to the MPK cascade pathway in response to low-temperature stress is rarely reported. In this study, NaHS treatment significantly decreased the electrolyte leakage (EL), superoxide anion (O2-) production rate, and hydrogen peroxide (H2O2) content of seedlings at low temperatures. In addition, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were obviously increased; and the photochemical efficiency of PSII (Fv/Fm) was enhanced with treatment with NaHS, indicating that NaHS improved the seedlings' cold tolerance by alleviating the degree of membrane lipid peroxidation and oxidative damage. However, H2S scavenger hypotaurine (HT) treatment showed the opposite effect. We found that H2S content, L-cysteine desulfhydrase (LCD) activity, and mRNA expression were increased by chilling stress but reduced by MPK inhibitor PD98059; PD98059 reversed the alleviating effect of H2S via increasing the EL and H2O2 contents. The expression levels of MPK1-MPK7 at low temperatures showed that SlMPK4 was significantly induced by exogenous NaHS and showed a trend of first increasing and then decreasing, while the expression level of SlMPK4 in HT-treated seedlings was lower than that of the control. After SlMPK4 was silenced by virus-induced gene silencing, the H2S-induced upregulation of C-repeat-Binding Factor (CBF1), inducer of CBF expression 1 (ICE1), respiratory burst oxidase homologs (RBOH1, RBOH2) at low temperatures disappeared, and tomato cold tolerance decreased. In conclusion, H2S improves the cold tolerance of tomato plants by increasing the activity of antioxidant enzymes and reducing reactive oxygen species (ROS) accumulation and membrane lipid peroxidation. MPK4 may act as a downstream signaling molecule in this process.

14.
Sci Rep ; 14(1): 7203, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532034

RESUMEN

Toluene treatment has received extensive attention, and ozone synergistic catalytic oxidation was thought to be a potential method to degrade VOCs (violate organic compounds) due to its low reaction temperature and high catalytic efficiency. A series of bimetal/Cord monolithic catalysts were prepared by impregnation with cordierite, including MnxCu5-x/Cord, MnxCo5-x/Cord and CuxCo5-x/Cord (x = 1, 2, 3, 4). Analysis of textural properties, structures and morphology characteristics on the prepared catalysts were conducted to evaluate their performance on toluene conversion. Effects of active component ratio, ozone addition and space velocity on the catalytic oxidation of toluene were investigated. Results showed that MnxCo5-x/Cord was the best among the three bimetal catalysts, and toluene conversion and mineralization rates reached 100 and 96% under the condition of Mn2Co3/Cord with 3.0 g/m3 O3 at the space velocity of 12,000 h-1. Ozone addition in the catalytic oxidation of toluene by MnxCo5-x/Cord could efficiently avoid the 40% reduction of the specific surface area of catalysts, because it could lower the optimal temperature from 300 to 100 °C. (Co/Mn)(Co/Mn)2O4 diffraction peaks in XRD spectra indicated all the four MnxCo1-x/Cord catalysts had a spinel structure, and diffraction peak intensity of spinel reached the largest at the ratio of Mn:Co = 2:3. Toluene conversion rate increased with rising ozone concentration because intermediate products generated by toluene degradation might react with excess ozone to generate free radicals like ·OH, which would improve the toluene mineralization rate of Mn2Co3/Cord catalyst. This study would provide a theoretical support for its industrial application.

15.
Sci Total Environ ; 926: 172103, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38556024

RESUMEN

This study was conducted to examine how colostrum pasteurization affects resistance genes and microbial communities in calf feces. Forty female Holstein calves were randomly assigned to either the control (CON) group, which received unheated colostrum, or the pasteurized colostrum (PAT) group. The calves body weight was measured weekly before morning feeding. Calf starter intake were measured and recorded daily before morning feeding. Samples of colostrum were collected before feeding. Blood was collected on d 1 and 70 before morning feeding. Ten calves were randomly selected from each group (n = 20 calves total) for fecal sampling on d 3, 28, 56 and 70 for subsequent DNA extraction and metagenomic sequencing. Total bacterial counts in the colostrum were markedly higher in the CON group than in the PAT group. Pasteurized colostrum administration substantially reduced the ARO diversity and diminishes the abundance of Enterobacteriaceae, thereby decreasing their contribution to resistance genes. Pasteurization also reduced glucoside hydrolase-66 activity in 3-day-old calves which led to an increase in the activity of aminoglycoside antibiotics, resulting in 52.63 % of PAT-enriched bacteria acquiring aminoglycoside resistance genes. However, from the perspective of overall microbial community, the proportion of aminoglycoside, beta-lactam and tetracycline resistance genes carried by microbial community in PAT group was lower than CON group (P < 0.05). Fecal samples from the PAT group contained greater abundances of Subdoligranulum (P < 0.05) and Lachnospiraceae_NK4A136_group (P < 0.05) on days 28 and 70 compared to CON. Network analysis and abundance variations of the different bacteria obtained by linear discriminant analysis effect size analysis showed that pasteurized colostrum feeding reduced the interactions among related bacteria and maintained stability of the hind-gut microbiome. In conclusion, these findings underscore the intricate interactions between early diet, calf resistance-gene transmission and microbial dynamics, which should be carefully considered in calf-rearing practices.


Asunto(s)
Dieta , Microbiota , Animales , Bovinos , Femenino , Embarazo , Aminoglicósidos , Alimentación Animal/análisis , Animales Recién Nacidos , Antibacterianos/análisis , Calostro/química , Dieta/veterinaria , Heces/microbiología , Leche/química , Rumiantes
16.
Front Cell Infect Microbiol ; 14: 1358216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533381

RESUMEN

Avian pathogenic Escherichia coli (APEC) is a bacterial disease that harms the poultry industry worldwide, but its effect on Chinese Silkie has not been reported. Studies on whether there are differences in Silkie individual resistance to APEC and the regulatory role of spleen miRNAs lay the foundation for strategies against APEC. Therefore, 270 Silkie chickens were infected with the median lethal dose of an E. coli O1, O2, and O78 mixture. These chickens were divided into a susceptible group (Group S) and a recovery group (Group R) according to whether they survived 15 days postinfection (dpi). Moreover, 90 uninfected APEC Silkie served as controls (Group C). The splenic miRNA expression profile was examined to evaluate the role of miRNAs in the APEC infection response. Of the 270 Silkies infected with APEC, 144 were alive at 15 dpi. Cluster analysis and principal component analysis (PCA) of splenic miRNAs revealed that the four Group R replicates were clustered with the three Group C replicates and were far from the three Group S replicates. Differentially expressed (DE) miRNAs, especially gga-miR-146b-5p, play essential roles in immune and inflammatory responses to APEC. Functional enrichment analyses of DEmiRNAs suggested that suppression of immune system processes (biological processes) might contribute to susceptibility to APEC and that FoxO signaling pathways might be closely associated with the APEC infection response and postinfection repair. This study paves the way for screening anti-APEC Silkies and provides novel insights into the regulatory role of miRNAs in APEC infection.


Asunto(s)
Infecciones por Escherichia coli , MicroARNs , Enfermedades de las Aves de Corral , Animales , Escherichia coli/genética , Pollos/genética , Bazo/metabolismo , MicroARNs/farmacología , Infecciones por Escherichia coli/microbiología , Enfermedades de las Aves de Corral/microbiología
17.
Commun Biol ; 7(1): 189, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366110

RESUMEN

While genome-wide studies have identified genomic loci in hosts associated with life-threatening Covid-19 (critical Covid-19), the challenge of resolving these loci hinders further identification of clinically actionable targets and drugs. Building upon our previous success, we here present a priority index solution designed to address this challenge, generating the target and drug resource that consists of two indexes: the target index and the drug index. The primary purpose of the target index is to identify clinically actionable targets by prioritising genes associated with Covid-19. We illustrate the validity of the target index by demonstrating its ability to identify pre-existing Covid-19 phase-III drug targets, with the majority of these targets being found at the leading prioritisation (leading targets). These leading targets have their evolutionary origins in Amniota ('four-leg vertebrates') and are predominantly involved in cytokine-cytokine receptor interactions and JAK-STAT signaling. The drug index highlights opportunities for repurposing clinically approved JAK-STAT inhibitors, either individually or in combination. This proposed strategic focus on the JAK-STAT pathway is supported by the active pursuit of therapeutic agents targeting this pathway in ongoing phase-II/III clinical trials for Covid-19.


Asunto(s)
COVID-19 , Animales , Quinasas Janus/metabolismo , Transducción de Señal/genética , Factores de Transcripción STAT/genética , Citocinas/metabolismo
18.
Microb Pathog ; 189: 106586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382628

RESUMEN

Avian colibacillosis is a bacterial disease caused by avian pathogenic Escherichia coli (APEC) that results in great losses in the poultry industry every year. Individual Silkie chickens of the same breed that are given the same feed in the same feeding conditions have different levels of resistance or susceptibility to APEC. Differences in gut microbes, gut metabolites, and gene expression in the spleen of APEC-resistant and APEC-susceptible chickens were compared, and multiple omics associations were analyzed to explore the mechanism of resistance to APEC in Silkie chickens. Compared with those in the APEC-susceptible group, the APEC-resistant group showed significantly increased abundances of many gut microorganisms, including Bacillus, Thermoactinomyces, Arthrobacter, and Ureibacillus, which were positively correlated with norvaline, l-arginine, and valyl-glycine levels. Intestinal tryptophan, indole, and indole derivative-related differentially abundant metabolites played an active role in combatting APEC infection. In the spleen, "response to stimulus" was the most significantly enriched GO term, and "cytokine‒cytokine receptor interaction" was the most significantly enriched KEGG pathway. The arginine biosynthesis and PPAR signaling pathways were the KEGG pathways that were significantly enriched with differentially abundant metabolites and differentially expressed genes. This study provides new insight into the prevention and treatment of APEC infection in Silkie chickens and lays a foundation to study the mechanism of APEC infection in poultry.


Asunto(s)
Infecciones por Escherichia coli , Microbiota , Enfermedades de las Aves de Corral , Animales , Escherichia coli/genética , Pollos/microbiología , Transcriptoma , Infecciones por Escherichia coli/microbiología , Metaboloma , Indoles , Enfermedades de las Aves de Corral/microbiología
19.
IEEE J Biomed Health Inform ; 28(5): 2943-2954, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412077

RESUMEN

In the fetal cardiac ultrasound examination, standard cardiac cycle (SCC) recognition is the essential foundation for diagnosing congenital heart disease. Previous studies have mostly focused on the detection of adult CCs, which may not be applicable to the fetus. In clinical practice, localization of SCCs needs to recognize end-systole (ES) and end-diastole (ED) frames accurately, ensuring that every frame in the cycle is a standard view. Most existing methods are not based on the detection of key anatomical structures, which may not recognize irrelevant views and background frames, results containing non-standard frames, or even it does not work in clinical practice. We propose an end-to-end hybrid neural network based on an object detector to detect SCCs from fetal ultrasound videos efficiently, which consists of 3 modules, namely Anatomical Structure Detection (ASD), Cardiac Cycle Localization (CCL), and Standard Plane Recognition (SPR). Specifically, ASD uses an object detector to identify 9 key anatomical structures, 3 cardiac motion phases, and the corresponding confidence scores from fetal ultrasound videos. On this basis, we propose a joint probability method in the CCL to learn the cardiac motion cycle based on the 3 cardiac motion phases. In SPR, to reduce the impact of structure detection errors on the accuracy of the standard plane recognition, we use XGBoost algorithm to learn the relation knowledge of the detected anatomical structures. We evaluate our method on the test fetal ultrasound video datasets and clinical examination cases and achieve remarkable results. This study may pave the way for clinical practices.


Asunto(s)
Corazón Fetal , Interpretación de Imagen Asistida por Computador , Redes Neurales de la Computación , Ultrasonografía Prenatal , Humanos , Ultrasonografía Prenatal/métodos , Femenino , Embarazo , Interpretación de Imagen Asistida por Computador/métodos , Corazón Fetal/diagnóstico por imagen , Corazón Fetal/fisiología , Algoritmos , Cardiopatías Congénitas/diagnóstico por imagen , Grabación en Video/métodos
20.
Anim Nutr ; 16: 326-337, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362513

RESUMEN

This study was to investigate growth performance, rumination development, rumen fermentation and feed digestion in young calves provided high volumes (about 20% of calf birth weight) of milk with or without forage inclusion and how these parameters correlate with each other. Immediately after birth, 160 newborn Holstein female calves (41.6 ± 4.2 kg of initial BW) were randomly divided into 2 treatments: 1) starter (CON, only starter) and 2) starter and hay (HAY, both starter and hay). The calves were fed their respective experimental diets from d 4 to 84, after which they were all introduced to similar diets until the end of the experiment on d 196. Treatment had no effect on growth and structural measurements throughout the experimental period. However, treatment had an effect on the other parameters, mainly during the post-weaning period. Forage supplementation tended to reduce starter dry matter intake (P = 0.05), while increasing the forage intake (P < 0.01) and the feed-to-gain ratio (P < 0.01). HAY calves had increased neutral detergent fiber (NDF) and physically effective NDF (peNDF) intakes (P < 0.05) and tended to lower (P < 0.01) starch intake compared to CON calves. The HAY calves had a higher rumination time (P < 0.01), ruminal pH (P < 0.01), and acetate-to-propionate ratio (P = 0.05) compared to the CON calves. Spearman correlation analysis showed that rumination time was positively related to the ruminal pH at d 84 (P = 0.01) and 196 (P = 0.02). The HAY calves had similar apparent total-tract digestibility of dry matter (DM), NDF and ether extract (EE), but lower digestibility of organic matter (OM, P = 0.03), crude protein (CP, P < 0.01) and starch (P < 0.01) compared to those of the CON calves at week 12. Furthermore, there were no positive relationships between rumination time and nutrient digestibility or between rumination time per kilogram DM and nutrient digestibility. In conclusion, feeding hay to calves fed a high milk level improved rumination during the post-weaning period only, without a concomitant effect on growth performance throughout the experimental period, suggesting no detrimental effect of feeding forage in calves fed high milk level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...