Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 273: 118560, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560971

RESUMEN

The film-forming process of chitosan composite films is an important issue because it affects their experimental design, chemicals used, and feasibility of large-scaled fabrication. In this work, electrophoresis is employed to produce chitosan composite films with significantly reduced processing time and environmentally friendly chemicals. With the addition of hydrogen peroxide and polyethylene glycol, the parasitic hydrogen bubble formation during the electrophoresis of chitosan and polydopamine is effectively inhibited that leads to the formation of a defectless chitosan/polyethylene glycol/polydopamine composite film which could be removed from the substrate readily. In addition, the chitosan/polyethylene glycol/polydopamine composite film reveals significantly improved tensile strength and a slower decomposition rate as compared to those of chitosan film and chitosan/polyethylene glycol composite film. This is attributed to the strong interaction between chitosan and polydopamine. Lastly, the chitosan/polyethylene glycol/polydopamine composite film exhibits excellent UV-shielding ability without compromising its visible transparency.

2.
Carbohydr Polym ; 250: 116912, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049832

RESUMEN

Electrophoresis of chitosan and its composites are widely used to form a coating on selective substrates, but the parasitic water electrolysis causes structural defects that weaken the resulting film. In this work, we demonstrate a bipolar electrophoresis technique that leverages the water electrolysis to produce a chitosan film with less porosity and surface cavities. The process involves a negative bias to deposit the protonated chitosan molecules from the solution, followed by a positive bias to remove the entrapped hydrogen bubbles via the re-protonation of chitosan deposit. Since water electrolysis occurs for both positive and negative bias, the bipolar profile is designed to engender pH changeup near the electrode for "surface conditioning" of chitosan film. The bipolar electrophoresis route demonstrates better coulomb efficiency than that of conventional potentiostatic electrophoresis, resulting in a free-standing chitosan film with sufficient mechanical strength and large area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...