Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(12)2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39288992

RESUMEN

Whereas severe COVID-19 is often associated with elevated autoantibody titers, the underlying mechanism behind their generation has remained unclear. Here we report clonal composition and diversity of autoantibodies in humoral response to SARS-CoV-2. Immunoglobulin repertoire analysis and characterization of plasmablast-derived monoclonal antibodies uncovered clonal expansion of plasmablasts producing cardiolipin (CL)-reactive autoantibodies. Half of the expanded CL-reactive clones exhibited strong binding to SARS-CoV-2 antigens. One such clone, CoV1804, was reactive to both CL and viral nucleocapsid (N), and further showed anti-nucleolar activity in human cells. Notably, antibodies sharing genetic features with CoV1804 were identified in COVID-19 patient-derived immunoglobulins, thereby constituting a novel public antibody. These public autoantibodies had numerous mutations that unambiguously enhanced anti-N reactivity, when causing fluctuations in anti-CL reactivity along with the acquisition of additional self-reactivities, such as anti-nucleolar activity, in the progeny. Thus, potentially CL-reactive precursors may have developed multiple self-reactivities through clonal selection, expansion, and somatic hypermutation driven by viral antigens. Our results revealed the nature of autoantibody production during COVID-19 and provided novel insights into the origin of virus-induced autoantibodies.


Asunto(s)
Anticuerpos Antivirales , Autoanticuerpos , COVID-19 , Cardiolipinas , Células Plasmáticas , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/virología , Autoanticuerpos/inmunología , SARS-CoV-2/inmunología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Cardiolipinas/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Monoclonales/inmunología , Femenino , Masculino
2.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39226888

RESUMEN

Liquid biopsies based on peripheral blood offer a minimally invasive alternative to solid tissue biopsies for the detection of diseases, primarily cancers. However, such tests currently consider only the serum component of blood, overlooking a potentially rich source of biomarkers: adaptive immune receptors (AIRs) expressed on circulating B and T cells. Machine learning-based classifiers trained on AIRs have been reported to accurately identify not only cancers but also autoimmune and infectious diseases as well. However, when using the conventional "clonotype cluster" representation of AIRs, individuals within a disease or healthy cohort exhibit vastly different features, limiting the generalizability of these classifiers. This study aimed to address the challenge of classifying specific diseases from circulating B or T cells by developing a novel representation of AIRs based on similarity networks constructed from their antigen-binding regions (paratopes). Features based on this novel representation, paratope cluster occupancies (PCOs), significantly improved disease classification performance for infectious disease, autoimmune disease, and cancer. Under identical methodological conditions, classifiers trained on PCOs achieved a mean AUC of 0.893 when applied to new individuals, outperforming clonotype cluster-based classifiers (AUC 0.714) and the best-performing published classifier (AUC 0.777). Surprisingly, for cancer patients, we observed that "healthy-biased" AIRs were predicted to target known cancer-associated antigens at dramatically higher rates than healthy AIRs as a whole (Z scores >75), suggesting an overlooked reservoir of cancer-targeting immune cells that could be identified by PCOs.


Asunto(s)
Enfermedades Transmisibles , Neoplasias , Humanos , Neoplasias/inmunología , Enfermedades Transmisibles/inmunología , Receptores Inmunológicos/metabolismo , Aprendizaje Automático , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/diagnóstico , Autoinmunidad
3.
Cancer Lett ; 595: 217006, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38823763

RESUMEN

Driver genomic mutations in tumors define specific molecular subtypes that display distinct malignancy competence, therapeutic resistance and clinical outcome. Although TP53 mutation has been identified as the most common mutation in hepatocellular carcinoma (HCC), current understanding on the biological traits and therapeutic strategies of this subtype has been largely unknown. Here, we reveal that fatty acid ß oxidation (FAO) is remarkable repressed in TP53 mutant HCC and which links to poor prognosis in HCC patients. We further demonstrate that carnitine palmitoyltransferase 1 (CPT1A), the rate-limiting enzyme of FAO, is universally downregulated in liver tumor tissues, and which correlates with poor prognosis in HCC and promotes HCC progression in the de novo liver tumor and xenograft tumor models. Mechanically, hepatic Cpt1a loss disrupts lipid metabolism and acetyl-CoA production. Such reduction in acetyl-CoA reduced histone acetylation and epigenetically reprograms branched-chain amino acids (BCAA) catabolism, and leads to the accumulation of cellular BCAAs and hyperactivation of mTOR signaling. Importantly, we reveal that genetic ablation of CPT1A renders TP53 mutant liver cancer mTOR-addicted and sensitivity to mTOR inhibitor AZD-8055 treatment. Consistently, Cpt1a loss in HCC directs tumor cell therapeutic response to AZD-8055. CONCLUSION: Our results show genetic evidence for CPT1A as a metabolic tumor suppressor in HCC and provide a therapeutic approach for TP53 mutant HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Carnitina O-Palmitoiltransferasa , Neoplasias Hepáticas , Mutación , Proteína p53 Supresora de Tumor , Humanos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Metabolismo de los Lípidos/genética , Transducción de Señal , Acetilcoenzima A/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino
4.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908854

RESUMEN

BACKGROUND AND AIMS: The immunosuppressive tumor microenvironment (TME) plays an essential role in cancer progression and immunotherapy response. Despite the considerable advancements in cancer immunotherapy, the limited response to immune checkpoint blockade (ICB) therapies in patients with hepatocellular carcinoma (HCC) remains a major challenge for its clinical implications. Here, we investigated the molecular basis of the protein O-fucosyltransferase 1 (POFUT1) that drives HCC immune evasion and explored a potential therapeutic strategy for enhancing ICB efficacy. METHODS: De novo MYC/Trp53-/- liver tumor and the xenograft tumor models were used to evaluate the function of POFUT1 in immune evasion. Biochemical assays were performed to elucidate the underlying mechanism of POFUT1-mediated immune evasion. RESULTS: We identified POFUT1 as a crucial promoter of immune evasion in liver cancer. Notably, POFUT1 promoted HCC progression and inhibited T-cell infiltration in the xenograft tumor and de novo MYC/Trp53-/- mouse liver tumor models. Mechanistically, we demonstrated that POFUT1 stabilized programmed death ligand 1 (PD-L1) protein by preventing tripartite motif containing 21-mediated PD-L1 ubiquitination and degradation independently of its protein-O-fucosyltransferase activity. In addition, we further demonstrated that PD-L1 was required for the tumor-promoting and immune evasion effects of POFUT1 in HCC. Importantly, inhibition of POFUT1 could synergize with anti-programmed death receptor 1 therapy by remodeling TME in the xenograft tumor mouse model. Clinically, POFUT1 high expression displayed a lower response rate and worse clinical outcome to ICB therapies. CONCLUSIONS: Our findings demonstrate that POFUT1 functions as a novel regulator of tumor immune evasion and inhibition of POFUT1 may be a potential therapeutic strategy to enhance the efficacy of immune therapy in HCC.


Asunto(s)
Antígeno B7-H1 , Fucosiltransferasas , Inmunoterapia , Neoplasias Hepáticas , Fucosiltransferasas/metabolismo , Fucosiltransferasas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Ratones , Animales , Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Escape del Tumor , Microambiente Tumoral , Evasión Inmune , Línea Celular Tumoral
5.
Food Chem X ; 21: 101183, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38357371

RESUMEN

Aldehydes are the strongest and most abundant aromatic compounds in Kung Pao Chicken. However, the perceptual interactions between these aldehydes are not fully understood. Therefore, the flavor contribution of nine key aldehydes was estimated by determining thresholds. Except for benzaldehyde, the thresholds of all aldehydes measured in tasteless chicken matrices (TM) were significantly larger than their comparable values in water. Based on these results, the perceptual interactions of nine aldehydes were evaluated using S-curves and σ-τ plots. The interactions indicated that 31 of their 36 binary mixtures exhibited additive effects, three had masking effects, while two had synergistic effects. Recombination experiments showed that the addition of aldehydes lowered the odor threshold of aldehyde reconstitution (AR), thereby enhancing the aroma intensity of AR. These findings contribute to a better understanding of Kung Pao Chicken's aroma and can be used to improve its aroma quality.

6.
Adv Sci (Weinh) ; 11(6): e2306156, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062916

RESUMEN

Acute lung injury (ALI) is a severe respiratory disease with a high mortality rate. The integrity of the pulmonary endothelial barrier influences the development and prognosis of ALI. Therefore, it has become an important target for ALI treatment. Extracellular vesicles (EVs) are promising nanotherapeutic agents against ALI. Herein, endothelium-derived engineered extracellular vesicles (eEVs) that deliver microRNA-125b-5p (miRNA-125b) to lung tissues exerting a protective effect on endothelial barrier integrity are reported. eEVs that are modified with lung microvascular endothelial cell-targeting peptides (LET) exhibit a prolonged retention time in lung tissues and targeted lung microvascular endothelial cells in vivo and in vitro. To improve the efficacy of the EVs, miRNA-125b is loaded into EVs. Finally, LET-EVs-miRNA-125b is constructed. The results show that compared to the EVs, miRNA-125b, and EVs-miRNA-125b, LET-EVs-miRNA-125b exhibit the most significant treatment efficacy in ALI. Moreover, LET-EVs-miRNA-125b is found to have an important protective effect on endothelial barrier integrity by inhibiting cell apoptosis, promoting angiogenesis, and protecting intercellular junctions. Sequencing analysis reveals that LET-EVs-miRNA-125b downregulates early growth response-1 (EGR1) levels, which may be a potential mechanism of action. Taken together, these findings suggest that LET-EVs-miRNA-125b can treat ALI by protecting the endothelial barrier integrity.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , MicroARNs , Humanos , Células Endoteliales , Pulmón , MicroARNs/genética , Lesión Pulmonar Aguda/terapia , Endotelio
7.
Viruses ; 15(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140662

RESUMEN

The entry of SARS-CoV-2 into host cells is mediated by the interaction between the spike receptor-binding domain (RBD) and host angiotensin-converting enzyme 2 (ACE2). Certain human antibodies, which target the spike N-terminal domain (NTD) at a distant epitope from the host cell binding surface, have been found to augment ACE2 binding and enhance SARS-CoV-2 infection. Notably, these antibodies exert their effect independently of the antibody fragment crystallizable (Fc) region, distinguishing their mode of action from previously described antibody-dependent infection-enhancing (ADE) mechanisms. Building upon previous hypotheses and experimental evidence, we propose that these NTD-targeting infection-enhancing antibodies (NIEAs) achieve their effect through the crosslinking of neighboring spike proteins. In this study, we present refined structural models of NIEA fragment antigen-binding region (Fab)-NTD complexes, supported by molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry (HDX-MS). Furthermore, we provide direct evidence confirming the crosslinking of spike NTDs by NIEAs. Collectively, our findings advance our understanding of the molecular mechanisms underlying NIEAs and their impact on SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus , Unión Proteica , Anticuerpos Antivirales
8.
Molecules ; 28(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836685

RESUMEN

Mpox virus (MPXV), the most pathogenic zoonotic orthopoxvirus, caused worldwide concern during the SARS-CoV-2 epidemic. Growing evidence suggests that the MPXV surface protein A29 could be a specific diagnostic marker for immunological detection. In this study, a fully synthetic phage display library was screened, revealing two nanobodies (A1 and H8) that specifically recognize A29. Subsequently, an in vitro affinity maturation strategy based on computer-aided design was proposed by building and docking the A29 and A1 three-dimensional structures. Ligand-receptor binding and molecular dynamics simulations were performed to predict binding modes and key residues. Three mutant antibodies were predicted using the platform, increasing the affinity by approximately 10-fold compared with the parental form. These results will facilitate the application of computers in antibody optimization and reduce the cost of antibody development; moreover, the predicted antibodies provide a reference for establishing an immunological response against MPXV.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/química , Monkeypox virus , SARS-CoV-2/metabolismo , Diseño Asistido por Computadora
9.
Clin Transl Med ; 13(10): e1452, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37846441

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of death from cancer and has a very poor prognosis with few effective therapeutic options. Despite the approval of lenvatinib for the treatment of patients suffering from advanced HCC, only a small number of patients can benefit from this targeted therapy. METHODS: Diethylnitrosamine (DEN)-CCL4 mouse liver tumour and the xenograft tumour models were used to evaluate the function of KDM6A in HCC progression. The xenograft tumour model and HCC cell lines were used to evaluate the role of KDM6A in HCC drug sensitivity to lenvatinib. RNA-seq and ChIP assays were conducted for mechanical investigation. RESULTS: We revealed that KDM6A exhibited a significant upregulation in HCC tissues and was associated with an unfavourable prognosis. We further demonstrated that KDM6A knockdown remarkably suppressed HCC cell proliferation and migration in vitro. Moreover, hepatic Kdm6a loss also inhibited liver tumourigenesis in a mouse liver tumour model. Mechanistically, KDM6A loss downregulated the FGFR4 expression to suppress the PI3K-AKT-mTOR signalling pathway, leading to a glucose and lipid metabolism re-programming in HCC. KDM6A and FGFR4 levels were positively correlated in HCC specimens and mouse liver tumour tissues. Notably, KDM6A knockdown significantly inhibited the efficacy of lenvatinib therapy in HCC cells in vitro and in vivo. CONCLUSIONS: Our findings revealed that KDM6A promoted HCC progression by activating FGFR4 expression and may be an essential molecule for influencing the efficacy of lenvatinib in HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética
10.
Hepatology ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556368

RESUMEN

BACKGROUND AND AIMS: Epigenetic plasticity is a major challenge in cancer-targeted therapy. However, the molecular basis governing this process has not yet been clearly defined. Despite the considerable success of poly(ADP-ribose) polymerase inhibitors (PARPi) in cancer therapy, the limited response to PARPi, especially in HCC, has been a bottleneck in its clinical implications. Herein, we investigated the molecular basis of the histone methyltransferase KMT5C (lysine methyltransferase 5C) that governs PARPi sensitivity and explored a potential therapeutic strategy for enhancing PARPi efficacy. APPROACH AND RESULTS: We identified KMT5C, a trimethyltransferase of H4K20, as a targetable epigenetic factor that promoted liver tumor growth in mouse de novo MYC/Trp53-/- and xenograft liver tumor models. Notably, induction of KMT5C by environmental stress was crucial for DNA repair and HCC cell survival. Mechanistically, KMT5C interacted with the pivotal component of homologous recombination repair, RAD51, and promoted RAD51/RAD54 complex formation, which was essential for the activation of dsDNA breaks repair. This effect depended on the methyltransferase activity of KMT5C. We further demonstrated that the function of KMT5C in promoting HCC progression was dependent on RAD51. Importantly, either a pharmacological inhibitor (A196) or genetic inhibition of KMT5C sensitized liver cancer cells to PARPi. CONCLUSIONS: KMT5C played a vital role in promoting liver cancer progression by activating the DNA repair response. Our results revealed a novel therapeutic approach using the KMT5C inhibitor A196, concurrent with olaparib, as a potential HCC therapy.

11.
Immunity ; 56(8): 1939-1954.e12, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37442134

RESUMEN

Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Interleucina-10/genética , Macrófagos Alveolares/metabolismo , Estudio de Asociación del Genoma Completo , Peptidil-Dipeptidasa A/metabolismo
12.
Dalton Trans ; 52(25): 8716-8727, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310365

RESUMEN

Among carbon allotropes, 2D graphdiyne (GDY) possesses the merits of good ductility, strong conductivity and an adjustable energy band structure. In this study, a GDY/ZnCo-ZIF S-scheme heterojunction photocatalyst has been successfully prepared by a low-temperature mixing method. Using eosin as a photosensitizer and triethanolamine as a solvent, the hydrogen production of the GDY/ZnCo-ZIF-0.9 composite reaches 171.79 µmol, which is 6.67 and 13.5 times that of the GDY and ZnCo-ZIF materials, respectively. The apparent quantum efficiency of the GDY/ZnCo-ZIF-0.9 composite at 470 nm is 2.8%. The improved photocatalytic efficiency may be attributed to the creation of an S-scheme heterojunction structure that enables efficient separation of space charges. In addition, the EY-sensitized GDY/ZnCo-ZIF catalyst endows the GDY with a special structure to provide an abundance of electrons for the ZnCo-ZIF material, thus facilitating the photocatalytic reduction reaction to produce hydrogen. A novel perspective is presented in this study regarding the construction of an S-scheme heterojunction based on graphdiyne for efficient photocatalytic hydrogen generation.

13.
J Transl Med ; 21(1): 255, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046312

RESUMEN

PURPOSE: The claudin 18.2 (CLDN18.2) antigen is frequently expressed in malignant tumors, including pancreatic ductal adenocarcinoma (PDAC). Although CLDN18.2-targeted CAR-T cells demonstrated some therapeutic efficacy in PDAC patients, further improvement is needed. One of the major obstacles might be the abundant cancer-associated fibroblasts (CAFs) in the PDAC tumor microenvironment (TME). Targeting fibroblast activation protein (FAP), a vital characteristic of CAFs provides a potential way to overcome this obstacle. In this study, we explored the combined antitumor activity of FAP-targeted and CLDN18.2-targeted CAR-T cells against PDAC. METHODS: Novel FAP-targeted CAR-T cells were developed. Sequential treatment of FAP-targeted and CLDN18.2-targeted CAR-T cells as well as the corresponding mechanism were explored in immunocompetent mouse models of PDAC. RESULTS: The results indicated that the priorly FAP-targeted CAR-T cells infusion could significantly eliminate CAFs and enhance the anti-PDAC efficacy of subsequently CLDN18.2-targeted CAR-T cells in vivo. Interestingly, we observed that FAP-targeted CAR-T cells could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) and promote the survival of CD8+ T cells and CAR-T cells in tumor tissue. CONCLUSION: In summary, our finding demonstrated that FAP-targeted CAR-T cells could increase the antitumor activities of sequential CAR-T therapy via remodeling TME, at least partially through inhibiting MDSCs recruitment. Sequential infusion of FAP-targeted and CLDN18.2-targeted CAR-T cells might be a feasible approach to enhance the clinical outcome of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Células Supresoras de Origen Mieloide , Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Animales , Ratones , Carcinoma Ductal Pancreático/terapia , Linfocitos T CD8-positivos , Línea Celular Tumoral , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Serina Endopeptidasas/metabolismo , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas
14.
Ying Yong Sheng Tai Xue Bao ; 34(1): 221-228, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36799397

RESUMEN

To screen out phosphorus solubilizing strains that can adapt to cold climate in Qinghai Province, Bacillus mucilaginosus, B. megaterium, B. cereus, Streptomyces violovariabilis, S. cinnamofuscus, and S. flavoagglomeratus were screened with solid plate medium as the primary and liquid medium as the secondary screening, with calcium phosphate, lecithin, and phytic acid as the single source of phosphorus. By comprehensively comparing the size of phosphate solubilizing circle in the solid plate medium and the soluble phosphorus content in the liquid medium, three strains of phosphate solubilizing bacteria with good phosphate solubilizing effects were screened, S. violovariabilis, S. cinnamofuscus, and B. mucilaginosus. The three phosphate solubilizing bacteria were made into liquid ino-culants, and the small rapeseed pot experiment was carried out with two soils with different fertilities in a cold climate in September. Compared with the control, plant height, fresh weight, root length, and root weight of rapes in high-fertility cultivated soil increased by 35.5%, 191.0%, 26.2%, and 282.7%, while plant phosphorus absorption, total phosphorus and available phosphorus contents in the rhizosphere soil increased by 968.9%, 5.1%, and 2.1%, respectively. In low-fertility soil, plant height and fresh weight was increased by 45.8% and 61.3%, root length and weight was decreased by 2.6% and 4.4%, while plant phosphorus absorption and the contents of total P and available P in rhizosphere soil were increased by 91.5 %, 29.1%, and 213.7%, respectively. The effect of the other two inoculants treatments was less significant than S. violovariabilis. Therefore, S. violovariabilis was the phosphate solubilizing strain suitable for the cold climate in Qinghai.


Asunto(s)
Brassica napus , Fósforo Dietético , Fósforo , Fosfatos , Suelo , Microbiología del Suelo
15.
Biophys Rev ; 14(6): 1247-1253, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36536641

RESUMEN

Structural genomics began as a global effort in the 1990s to determine the tertiary structures of all protein families as a response to large-scale genome sequencing projects. The immediate outcome was an influx of tens of thousands of protein structures, many of which had unknown functions. At the time, the value of structural genomics was controversial. However, the structures themselves were only the most obvious output. In addition, these newly solved structures motivated the emergence of huge data science and infrastructure efforts, which, together with advances in Deep Learning, have brought about a revolution in computational molecular biology. Here, we review some of the computational research carried out at the Protein Data Bank Japan (PDBj) during the Protein 3000 project under the leadership of Haruki Nakamura, much of which continues to flourish today.

16.
Comput Struct Biotechnol J ; 20: 6033-6040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348766

RESUMEN

To assess the frequency of SARS-CoV-2 infection in the general population, we searched over 64 million heavy chain antibody sequences from healthy unvaccinated, healthy BNT162b2 vaccinated and COVID-19 patient repertoires for sequences similar to 11 previously reported enhancing antibodies. Although the distribution of sequence identities was similar in all three groups of repertoires, the COVID-19 and healthy vaccinated hits were significantly more clonally expanded than healthy unvaccinated hits. Furthermore, among the tested hits, 17 out of 94 from COVID-19 and 9 out of 59 from healthy vaccinated, compared with only 2 out of 96 from healthy unvaccinated, bound to the enhancing epitope. A total of 9 of the 28 epitope-binding antibodies enhanced ACE2 receptor binding to the spike protein. Together, this study revealed that infection enhancing-like antibodies are far more frequent in COVID-19 patients or healthy vaccinated donors than in healthy unvaccinated donors, but a reservoir of potential enhancing antibodies exists in healthy donors that could potentially mature to actual enhancing antibodies upon infection.

17.
Nat Commun ; 13(1): 3814, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780140

RESUMEN

Birds, reptiles and insects have the ability to discriminate humidity levels that influence their survival and geographic distribution. Insects are particularly susceptible to humidity changes due to high surface area to volume ratios, but it remains unclear how humidity sensors transduce humidity signals. Here we identified Or42b-expressing olfactory sensory neurons, which are required for moisture attraction in Drosophila. The sensilla housing Or42b neurons show cuticular deformations upon moist air stimuli, indicating a conversion of humidity into mechanical force. Accordingly, we found Or42b neurons directly respond to humidity changes and rely on the mechanosensitive ion channel TMEM63 to mediate humidity sensing (hygrosensation). Expressing human TMEM63B in Tmem63 mutant flies rescued their defective phenotype in moisture attraction, demonstrating functional conservation. Thus, our results reveal a role of Tmem63 in hygrosensation and support the strategy to detect humidity by transforming it into a mechanical stimulus, which is unique in sensory transduction.


Asunto(s)
Proteínas de Drosophila , Neuronas Receptoras Olfatorias , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Humedad , Insectos , Sensilos
18.
Bioresour Technol ; 357: 127350, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35609751

RESUMEN

This study aimed to clarify the effect of the integrated addition of different proportions of biochar (0 and 5%) and MnSO4 (0, 0.25%, and 0.50%) to pig manure compost. The results indicated the integrated use of biochar (BC) and Mn2+ advanced the compost humification. In particular, the integrated use of 0.50% Mn2+ and 5% BC showed higher total organic carbon degradation (20.67%) and humic acid production (81.26 g kg-1) than other treatments. Microbial community analysis showed the integrated use of BC and Mn2+ regulated the diversity and community structure of organic matter-mineralizing microbes by maintaining the relative abundance of bacteria Firmicutes (54.62%) and Proteobacteria (38.05%) at high levels during the thermophilic period and boosting those of the fungi of Ascomycota (58.91%) and Actinobacteria (15.60%) during the maturity period of composting. This study illustrated the potential and biological mechanisms of integrating BC and Mn2+ as additives in compost humification.


Asunto(s)
Compostaje , Animales , Bacterias , Carbón Orgánico , Compuestos de Manganeso , Estiércol/microbiología , Suelo/química , Sulfatos , Porcinos
19.
Sci Transl Med ; 14(650): eabn7737, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35471044

RESUMEN

The Omicron (B.1.1.529) SARS-CoV-2 variant contains an unusually high number of mutations in the spike protein, raising concerns of escape from vaccines, convalescent serum, and therapeutic drugs. Here, we analyzed the degree to which Omicron pseudo-virus evades neutralization by serum or therapeutic antibodies. Serum samples obtained 3 months after two doses of BNT162b2 vaccination exhibited 18-fold lower neutralization titers against Omicron than parental virus. Convalescent serum samples from individuals infected with the Alpha and Delta variants allowed similar frequencies of Omicron breakthrough infections. Domain-wise analysis using chimeric spike proteins revealed that this efficient evasion was primarily achieved by mutations clustered in the receptor binding domain but that multiple mutations in the N-terminal domain contributed as well. Omicron escaped a therapeutic cocktail of imdevimab and casirivimab, whereas sotrovimab, which targets a conserved region to avoid viral mutation, remains effective. Angiotensin-converting enzyme 2 (ACE2) decoys are another virus-neutralizing drug modality that are free, at least in theory, from complete escape. Deep mutational analysis demonstrated that an engineered ACE2 molecule prevented escape for each single-residue mutation in the receptor binding domain, similar to immunized serum. Engineered ACE2 neutralized Omicron comparably to the Wuhan strain and also showed a therapeutic effect against Omicron infection in hamsters and human ACE2 transgenic mice. Similar to previous SARS-CoV-2 variants, some sarbecoviruses showed high sensitivity against engineered ACE2, confirming the therapeutic value against diverse variants, including those that are yet to emerge.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Vacuna BNT162 , COVID-19/terapia , Humanos , Inmunización Pasiva , Ratones , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Sueroterapia para COVID-19
20.
Sci Signal ; 15(729): eabm5011, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35412849

RESUMEN

Toll-like receptor (TLR) stimulation induces glycolysis and the production of mitochondrial reactive oxygen species (ROS), both of which are critical for inflammatory responses in macrophages. Here, we demonstrated that cyclin J, a TLR-inducible member of the cyclin family, reduced cytokine production in macrophages by coordinately controlling glycolysis and mitochondrial functions. Cyclin J interacted with cyclin-dependent kinases (CDKs), which increased the phosphorylation of a subset of CDK substrates, including the transcription factor FoxK1 and the GTPase Drp1. Cyclin J-dependent phosphorylation of FoxK1 decreased the transcription of glycolytic genes and Hif-1α activation, whereas hyperactivation of Drp1 by cyclin J-dependent phosphorylation promoted mitochondrial fragmentation and impaired the production of mitochondrial ROS. In mice, cyclin J in macrophages limited the growth of tumor xenografts and protected against LPS-induced shock but increased the susceptibility to bacterial infection. Collectively, our findings indicate that cyclin J-CDK signaling promotes antitumor immunity and the resolution of inflammation by opposing the metabolic changes that drive inflammatory responses in macrophages.


Asunto(s)
Inmunidad Innata , Macrófagos , Animales , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...