Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 989351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338065

RESUMEN

Fires lead to dramatic shifts in ecosystems and have a large impact on the biota. Soil organisms, especially soil fauna, are often used as indicators of environmental change. At present, minimal attention has been paid to using soil fauna as an indicator of environmental change after a fire. Here, a field survey of burnt herbaceous vegetation in semi-arid areas was conducted to determine the response of soil arthropods to fire and their short-term recovery after fire. Overall, the abundance and biomass of soil arthropods was more sensitive to fire than the number of groups. The number of soil arthropod groups, especially the dominant groups (mites and springtails), was not significantly affected by wildfires. At the unburned site, soil arthropod abundance showed significant seasonal shifts that may be related to the vegetation properties, temperature, and precipitation caused by seasonal changes. In contrast, soil arthropods at the burnt sites showed a delayed recovery and had only reached 56%-82%, 17%-54%, and 91%-190% of the biomass in the unburnt forest at the 3, 6, and 9 months after the burning event. Our findings of soil arthropod abundance changes in the present study suggest that fire-induced changes in soil and vegetation properties (e.g., AN, LT, and VC) were crucial factors for the changes in soil arthropod abundance in this semi-arid grassland. We conclude that fire disturbance reduces the seasonal sensitivity of soil arthropods by altering their habitat. This study furthers our understanding of wildfire impact recovery by documenting the short-term temporal dynamics of soil arthropods.

2.
Small ; 17(22): e2005357, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33615728

RESUMEN

Despite numerous inherent merits of metal-organic frameworks (MOFs), structural fragility has imposed great restrictions on their wider involvement in many applications, such as in catalysis. Herein, a strategy for enhancing stability and enabling functionality in a labile Zr(IV)-MOF has been proposed by in situ porphyrin substitution. A size- and geometry-matched robust linear porphyrin ligand 4,4'-(porphyrin-5,15-diyl)dibenzolate (DCPP2- ) is selected to replace the 4,4'-(1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-2,7(1H,3H,6H,8H)-diyl)dibenzoate (NDIDB2- ) ligand in the synthesis of BUT-109(Zr), affording BUT-110 with varied porphyrin contents. Compared to BUT-109(Zr), the chemical stability of BUT-110 series is greatly improved. Metalloporphyrin incorporation endows BUT-110 MOFs with high catalytic activity in the photoreduction of CO2 , in the absence of photosensitizers. By tuning the metal species and porphyrin contents in BUT-110, the resulting BUT-110-50%-Co is demonstrated to be a good photocatalyst for selective CO2 -to-CO reduction, via balancing the chemical stability, photocatalytic efficiency, and synthetic cost. This work highlights the advantages of in situ ligand substitution for MOF modification, by which uniform distribution and high content of the incoming ligand are accessible in the resulting MOFs. More importantly, it provides a promising approach to convert unstable MOFs, which mainly constitute the vast MOF database but have always been neglected, into robust functional materials.

3.
Bioorg Med Chem Lett ; 27(8): 1670-1680, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28302397

RESUMEN

The emergence and spread of multidrug-resistant (MDR) Gram negative bacteria presents a serious threat for public health. Novel antimicrobials that could overcome the resistance problems are urgently needed. UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) is a cytosolic zinc-based deacetylase that catalyzes the first committed step in the biosynthesis of lipid A, which is essential for the survival of Gram-negative bacteria. Our efforts toward the discovery of novel LpxC inhibitors are presented herein.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/enzimología , Amidohidrolasas/metabolismo , Descubrimiento de Drogas , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...