Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(33): 13400-13404, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37552508

RESUMEN

In the field of a heterogeneous industrial catalysis process, the encapsulated structure plays a crucial role in preventing active sites from leaching during the reaction; however, related studies on the strategy to fabricate encapsulated catalysts under control remain rare. Herein, we develop an amino-assisted strategy to construct a highly stable catalyst with core-shell copper nanoparticles (NPs), namely, Cu@NC (NC represents the nitrogen-doped carbon), presenting not only excellent activity but also high durability on the hydrogenation of quinolines even in the large-scale tests, which is very vital in practical application. In contrast, in the absence of the amino group, the Cu NPs were dispersed out of the carbon surface to form Cu/NC, leading to readily lose activity in the recycling tests due to the leaching occurred during the catalytic process. This work offers a promising method to fabricate a stable catalyst to enhance durability in heterogeneous catalysis.

2.
Inorg Chem ; 61(40): 15817-15821, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36178332

RESUMEN

The exploration of efficient and low-consumption catalysts for carbon dioxide (CO2) conversion is desirable yet remains a great challenge. Herein, a novel catalyst composed of a hollow nitrogen-doped carbon framework (HNF) enriched with high-loading (9.8 wt %) atomically dispersed iron sites (defined as FeSAs/HNF) has been fabricated by a polymer-assisted strategy. As a result, FeSAs/HNF has an excellent performance on the cycloaddition reactions of CO2 with epoxides (the conversion >96%) under milder conditions because of its ultrahigh loading of atomically dispersed iron sites. This study not only provides an advanced catalyst for driving CO2 cycloaddition but also furnishes a novel perspective on the rational design of superior catalysts with high-loading active sites for diverse heterogeneous catalytic reactions.

3.
Chem Commun (Camb) ; 58(46): 6602-6605, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583345

RESUMEN

Herein, a novel strategy has been proposed to design a hollow structure via post-modified N sites coordinating to metal species. As a result, an atomically dispersed Co site catalyst with high loading has been obtained and has shown superb performance in CO2 cycloaddition to ethylene carbonate. This novel avenue can be extended to other atomically dispersed metal catalysts with high loading.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...