Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chin Med J (Engl) ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816396

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated. METHODS: We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (three each from CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. RESULTS: Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A, AQP5, and MUC5AC. CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. CONCLUSIONS: Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.

3.
J Hazard Mater ; 467: 133631, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335610

RESUMEN

Ubiquitous pollution due to microplastics through the food chain is a major cause of various deleterious effects on the human health. The aim of this study was to determine the existence of microplastics and the internal mechanism of microplastics as accelerators of cholelithiasis. Gallstones were collected from 16 patients after cholecystectomy, and microplastics in the gallstones were detected through laser direct infrared and pyrolysis gas chromatographymass spectrometry examinations. Mice model of gallstone were constructed with or without different diameters of microplastic (0.5, 5 and 50 µm). The affinity between microplastic and cholesterol or bilirubin was tested by co-culturing and qualified using molecular dynamics simulations. Finally, altered gut microbiota among the groups were identified using 16 s rRNA sequencing. The presence of microplastics in the gallstones of all the patients were confirmed. Microplastic content was significantly higher in younger chololithiasis patients (age<50 years). Mice fed a high-cholesterol diet with microplastic drinks showed more severe chololithiasis. In terms of the mechanism, microplastics showed a higher affinity for cholesterol than for bilirubin. Significant alterations in the gut microbiota have also been identified after microplastic intake in mice. Our study revealed the presence of microplastics in human gallstones, showcasing their potential to aggravate chololithiasis by forming large cholesterol-microplastic heteroaggregates and altering the gut microbiota.


Asunto(s)
Cálculos Biliares , Humanos , Animales , Ratones , Persona de Mediana Edad , Microplásticos , Plásticos , Colesterol , Bilirrubina
4.
Pest Manag Sci ; 80(6): 2587-2595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38265118

RESUMEN

BACKGROUND: Cry1Ab has emerged as a bio-insecticide to control Spodoptera litura (Lepidoptera: Noctuidae). However, the sublethal effects of Cry1Ab on the physiological changes and molecular level of S. litura have not been well documented. Our aims in this study were to assess the sublethal effect of Cry1Ab on S. litura, including midgut and Malpighian tubules as targets. RESULTS: After sublethal Cry1Ab exposure, distinct histological alterations were mainly observed in the midgut. Furthermore, the results of comparative RNA sequencing and tandem mass tag-based proteomics showed that, in the midgut, most differential expression genes (DEGs) were up-regulated and significantly enriched in the serine protease activity pathway, and up-regulated differential expression proteins (DEPs) were mainly associated with the oxidative phosphorylation pathway, whereas the down-regulated involved in the ribosome pathways. In the Malpighian tubules, DEGs and DEPs were significantly enriched in the ribosome pathway. We proposed that ribosome may act as a universal target in energy metabolism with other pathways via the results of protein-protein interaction analysis. Further, by verification of the mRNA expression of some Cry protein receptor and detoxification genes after Cry1Ab treatment, it was suggested that the ribosomal proteins (RPs) possibly participate in influencing the Bt-resistance of S. litura larvae under sublethal Cry1Ab exposure. CONCLUSION: Under sublethal Cry1Ab exposure, the midgut of S. litura was damaged, and the proteotranscriptomic analysis elucidated that Cry1Ab disrupted the energy homeostasis of larvae. Furthermore, we emphasized the potential role of ribosomes in sublethal Cry1Ab exposure. © 2024 Society of Chemical Industry.


Asunto(s)
Toxinas de Bacillus thuringiensis , Endotoxinas , Proteínas Hemolisinas , Larva , Túbulos de Malpighi , Spodoptera , Animales , Spodoptera/efectos de los fármacos , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/crecimiento & desarrollo , Túbulos de Malpighi/efectos de los fármacos , Túbulos de Malpighi/metabolismo , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Transcriptoma , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Insecticidas/toxicidad , Proteoma , Proteómica , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/metabolismo
6.
Mol Ecol Resour ; 23(4): 920-932, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36631404

RESUMEN

Most grouper species are functional protogynous hermaphrodites, but the genetic basis and the molecular mechanisms underlying the regulation of this unique reproductive strategy remain enigmatic. In this study, we report a high-quality chromosome-level genome assembly of the representative orange-spotted grouper (Epinephelus coioides). No duplication or deletion of sex differentiation-related genes was found in the genome, suggesting that sex development in this grouper may be related to changes in regulatory sequences or environmental factors. Transcriptomic analyses showed that aromatase and retinoic acid are probably critical to promoting ovarian fate determination, and follicle-stimulating hormone triggers the female-to-male sex change. Socially controlled sex-change studies revealed that, in sex-changing fish, the brain's response to the social environment may be mediated by activation of the phototransduction cascade and the melatonin synthesis pathway. In summary, our genomic and experimental results provide novel insights into the molecular mechanisms of sex differentiation and sex change in the protogynous groupers.


Asunto(s)
Lubina , Diferenciación Sexual , Animales , Femenino , Masculino , Diferenciación Sexual/genética , Lubina/genética , Lubina/metabolismo , Gónadas/metabolismo , Procesos de Determinación del Sexo/genética , Perfilación de la Expresión Génica , Proteínas de Peces/genética
7.
Front Immunol ; 13: 972298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052088

RESUMEN

Pancreatic adenosquamous carcinoma (ASPC) is a rare subtype of pancreatic cancer with lethal malignancy, and few studies have focused on the heterogeneity of ASPC. Here, we performed a single-cell sequencing procedure on pancreatic tumor tissue from an ASPC patient and a patient with high-grade intraductal papillary mucinous neoplasm (IPMN). Through the combined analysis of single-cell sequencing data from five pancreatic ductal adenocarcinoma (PDAC) patients, one IPMN patient, and one ASPC patient in a public database, we identified 11 main types of cells, including macrophages, B cells, cancer stem cells, ductal cells, fibroblasts, endo/stellate cells, neutrophils, acinar cells, T cells, natural killer (NK) cells, dendritic cells, and mast cells. Then, the different characteristics and differentiation paths of the immune microenvironment among IPMN, ASPC, and PDAC in macrophages, T cells, and cancer-associated fibroblasts (CAFs) were identified through multiple bioinformatics analyses. Two novel special cancer-associated fibroblasts were identified as nCAFs and imCAFs. Then, cancer cells in duct cells were identified using the infercnv software. Two ASPC-specific subgroups of cancer cells with squamous cell features were identified. Finally, the identified specific CAFs and cancer cells were mapped to TCGA-PAAD cohort through the cibersoftx software. All of these identified subgroups were calculated to have a significant prognostic value in pancreatic cancer patients. These findings will promote the clinical application of single-cell sequencing data of pancreatic cancer and deepen our understanding of ASPC.


Asunto(s)
Adenocarcinoma Mucinoso , Carcinoma Adenoescamoso , Carcinoma Ductal Pancreático , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Adenocarcinoma Mucinoso/patología , Carcinoma Adenoescamoso/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Humanos , Neoplasias Intraductales Pancreáticas/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pronóstico , Microambiente Tumoral/genética , Neoplasias Pancreáticas
8.
Front Oncol ; 12: 947133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875076

RESUMEN

The current study aimed to develop a new chronic pancreatitis and spontaneous pancreatic cancer model on C57/BL6 mouse through retrograde pancreatic duct injection of dibutyltin dichloride (DBTC) and explore its basic pathological changes as compared to the previous published chronic pancreatitis model through tail vein injection of DBTC with alcohol drinking. C57/BL6 mice were randomly divided into 3 groups: CG (control group; n = 15), VG (tail vein injection of DBTC (8 mg/kg) with 10% alcohol drinking group; n = 20), and PG (retrograde pancreatic duct injection of DBTC group (1 mg/kg); n = 30). Five mice in each group were sacrificed at a specific time point after the first treatment. The pathological section was observed. The activities of amylase, bilirubin, and hyaluronic acid in serum were determined. The expression of fibronectin, COL1A1, α-SMA, MMP-1, and TIMP-1 in the pancreas was assayed. Severe fibrosis of the pancreas with inflammatory cell infiltration could be observed on day 21 in the PG. In the VG, slight fibrosis of the pancreas with inflammatory cell infiltration was observed on day 28. There were significant differences in serum amylase, bilirubin, and hyaluronic acid levels between the PG and VG. The protein level of COL1A1 and α-SMA significantly increased in the PG. The mRNA expression of TIMP-1 is upregulated and the MMP-1 mRNA level is downregulated in the PG. Finally, typical neoplastic pathological change is significantly obvious in the PG. In conclusion, we established and validated a new chronic pancreatitis (CP) and spontaneous pancreatic cancer mouse model through retrograde injection of DBTC into the pancreatic duct. Previously reported mouse model through tail vein injection of DBTC with alcohol drinking could not cause obvious CP and neoplastic pathological change in mice.

9.
Commun Biol ; 4(1): 491, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888855

RESUMEN

Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%-45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-ß-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials.


Asunto(s)
Escamas de Animales/química , Bombyx/química , Proteínas de Insectos/química , Proteínas/química , Alas de Animales/química , Escamas de Animales/efectos de los fármacos , Animales , Bombyx/efectos de los fármacos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Alas de Animales/efectos de los fármacos
10.
Commun Biol ; 4(1): 286, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674721

RESUMEN

Voracious feeding, trans-continental migration and insecticide resistance make Spodoptera litura among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (SlituClk, SlituBmal1 and SlituCwo). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano , Conducta Alimentaria , Proteínas de Insectos/metabolismo , Spodoptera/metabolismo , Animales , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inactivación Metabólica , Proteínas de Insectos/genética , Insecticidas/farmacología , Larva/genética , Larva/metabolismo , Neonicotinoides/farmacología , Nitrocompuestos/farmacología , Interferencia de ARN , RNA-Seq , Spodoptera/efectos de los fármacos , Spodoptera/embriología , Spodoptera/genética , Factores de Tiempo , Transcriptoma
11.
PLoS One ; 14(5): e0216605, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31071150

RESUMEN

The Byssus, which is derived from the foot gland of mussels, has been proved to bind heavy metals effectively, but few studies have focused on the molecular mechanisms behind the accumulation of heavy metals by the byssus. In this study, we integrated high-throughput transcriptome and proteome sequencing to construct a comprehensive protein database for the byssus of Chinese green mussel (Perna viridis), aiming at providing novel insights into the molecular mechanisms by which the byssus binds to heavy metals. Illumina transcriptome sequencing generated a total of 55,670,668 reads. After filtration, we obtained 53,047,718 clean reads and subjected them to de novo assembly using Trinity software. Finally, we annotated 73,264 unigenes and predicted a total of 34,298 protein coding sequences. Moreover, byssal samples were analyzed by proteome sequencing, with the translated protein database from the foot transcriptome as the reference for further prediction of byssal proteins. We eventually determined 187 protein sequences in the byssus, of which 181 proteins are reported for the first time. Interestingly, we observed that many of these byssal proteins are rich in histidine or cysteine residues, which may contribute to the byssal accumulation of heavy metals. Finally, we picked one representative protein, Pvfp-5-1, for recombinant protein synthesis and experimental verification of its efficient binding to cadmium (Cd2+) ions.


Asunto(s)
Biomarcadores/metabolismo , Regulación de la Expresión Génica , Metales Pesados/metabolismo , Perna/genética , Perna/metabolismo , Proteoma/análisis , Transcriptoma , Secuencia de Aminoácidos , Animales , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Metales Pesados/farmacología , Perna/efectos de los fármacos
12.
Insect Biochem Mol Biol ; 110: 90-97, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31009677

RESUMEN

Insect cuticle is considered an adaptable and versatile building material with roles in the construction and function of exoskeleton. Its physical properties are varied, as the biological requirements differ among diverse structures and change during the life cycle of the insect. Although the bulk of cuticle consists basically of cuticular proteins (CPs) associated with chitin, the degree of cuticular sclerotization is an important factor in determining its physical properties. Spodoptera litura, the tobacco cutworm, is an important agricultural pest in Asia. Compared to the domestic silkworm, Bombyx mori, another lepidopteran whose CP genes have been well annotated, S. litura has a shorter life cycle, hides in soil during daytime beginning in the 5th instar and is exposed to soil in the pupal stage without the protection of a cocoon. In order to understand how the CP genes may have been adapted to support the characteristic life style of S. litura, we searched its genome and found 287 putative cuticular proteins that can be classified into 9 CP families (CPR with three groups (RR-1, RR-2, RR-3), CPAP1, CPAP3, CPF, CPFL, CPT, CPG, CPCFC and CPLCA), and a collection of unclassified CPs named CPH. There were also 112 cuticular proteins enriched in Histidine residues with content varying from 6% to 30%, comprising many more His-rich cuticular proteins than B. mori. A phylogenetic analysis between S. litura, M. sexta and B. mori uncovered large expansions of RR-1 and RR-2 CPs, forming large gene clusters in different regions of S. litura chromosome 9. We used RNA-seq analysis to document the expression profiles of CPs in different developmental stages and tissues of S. litura. The comparative genomic analysis of CPs between S. litura and B. mori integrated with the unique behavior and life cycle of the two species offers new insights into their contrasting ecological adaptations.


Asunto(s)
Genoma de los Insectos , Proteínas de Insectos/genética , Anotación de Secuencia Molecular , Spodoptera/genética , Animales , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Filogenia , Spodoptera/crecimiento & desarrollo , Spodoptera/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-30071347

RESUMEN

Increasing knowledge of DNA methylation that occurs on the sixth position of adenine (N6-methyladenine, 6 mA) has emerged as a novel epigenetic mark in eukaryotes and plays an important role in regulating gene transcription, DNA replication and repair, transposable activities, and others. Here, we show DNA 6 mA methylation is present in Bombyx mori, a lepidopteran model insect, and identify the 6 mA methyltransferase, METTL4, and 6 mA demethylase, NMAD, which regulate the levels of 6 mA in embryogenesis and cultured cells of B. mori. Importantly, RNAi knockdown of METTL4 and NMAD not only induce cell cycle arrest at G1 phase but also result in defects of chromosome alignments at metaphase. We further demonstrate that 6 mA methylation is widely distributed across the genome of B. mori by 6 mA-Seq and primarily enriched in the regulatory regions as well as gene bodies. Integrated analysis of 6 mA-Seq and RNA-Seq reveals that 6 mA methylation in B. mori is preferentially related with lowly expressed genes and negatively correlated with active gene transcription, which provides a novel regulatory mechanism of DNA 6 mA methylation on target genes. Altogether, these data identify 6 mA methylation in B. mori and demonstrate a crucial role of 6 mA signaling in controlling cell cycle progression.

14.
Nat Ecol Evol ; 1(11): 1747-1756, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28963452

RESUMEN

The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes, such as cytochrome P450, carboxylesterase and glutathione-S-transferase, were massively expanded in this polyphagous species, enabling its extraordinary ability to detect and detoxify many plant secondary compounds. Larval exposure to insecticidal toxins induced expression of detoxification genes, and knockdown of representative genes using short interfering RNA (siRNA) reduced larval survival, consistent with their contribution to the insect's natural pesticide tolerance. A population genetics study indicated that this species expanded throughout southeast Asia by migrating along a South India-South China-Japan axis, adapting to wide-ranging ecological conditions with diverse host plants and insecticides, surviving and adapting with the aid of its expanded detoxification systems. The findings of this study will enable the development of new pest management strategies for the control of major agricultural pests such as S. litura.


Asunto(s)
Genoma de los Insectos , Herbivoria , Inactivación Metabólica , Insecticidas/metabolismo , Spodoptera/genética , Adaptación Biológica , Animales , Mapeo Cromosómico , Dieta , Perfilación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Secuenciación Completa del Genoma
15.
Gigascience ; 6(3): 1-7, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28204480

RESUMEN

BACKGROUND: Chinese giant salamander (CGS) is the largest extant amphibian species in the world. Owing to its evolutionary position and four peculiar phenomenon of life (longevity, starvation tolerance, regenerative ability, and hatch without sunshine), it is an invaluable model species for research. However, lack of genomic resources leads to fewer study progresses in these fields, due to its huge genome of ∼50 GB making it extremely difficult to be assembled. RESULTS: We reported the sequenced transcriptome of more than 20 tissues from adult CGS using Illumina Hiseq 2000 technology, and a total of 93 366 no-redundancy transcripts with a mean length of 1326 bp were obtained. We developed for the first time an efficient pipeline to construct a high-quality reference gene set of CGS and obtained 26 135 coding genes. BUSCO and homologous assessment showed that our assembly captured 70.6% of vertebrate universal single-copy orthologs, and this coding gene set had a higher proportion of completeness CDS with comparable quality of the protein sets of Tibetan frog. CONCLUSIONS: These highest quality data will provide a valuable reference gene set to the subsequent research of CGS. In addition, our strategy of de novo transcriptome assembly and protein identification is applicable to similar studies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma , Urodelos/genética , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Anotación de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta , Especificidad de Órganos
16.
BMC Genomics ; 16: 362, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25952551

RESUMEN

BACKGROUND: Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. RESULTS: The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. CONCLUSIONS: The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.


Asunto(s)
Ascomicetos/fisiología , Interacciones Huésped-Patógeno , Proteómica , Triticum/citología , Triticum/microbiología , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Estrés Oxidativo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Simbiosis , Triticum/metabolismo , Triticum/fisiología
17.
Parasit Vectors ; 7: 314, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25000941

RESUMEN

BACKGROUND: Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). METHODS: To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). RESULTS: Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. CONCLUSIONS: Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis.


Asunto(s)
Anopheles/genética , Insectos Vectores/genética , Malaria/transmisión , Transcriptoma/genética , Animales , Secuencia de Bases , ADN Complementario/genética , Femenino , Regulación de la Expresión Génica/fisiología , Larva/genética , Masculino , Óvulo , Pupa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie
18.
Nat Commun ; 5: 3930, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24852848

RESUMEN

Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus.


Asunto(s)
Brassica/genética , Evolución Molecular , Genoma de Planta , Poliploidía , Arabidopsis/genética , Secuencia Conservada , Elementos Transponibles de ADN/genética , Conversión Génica , Dosificación de Gen , Duplicación de Gen , Reordenamiento Génico/genética , Genes Duplicados , Genes de Plantas , Variación Genética , Glucosinolatos/metabolismo , Anotación de Secuencia Molecular , Especificidad de la Especie , Sintenía/genética
19.
PLoS One ; 8(11): e81606, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24303057

RESUMEN

The disease septoria leaf blotch of wheat, caused by fungal pathogen Septoria tritici, is of worldwide concern. The fungus exhibits a hemibiotrophic lifestyle, with a long symptomless, biotrophic phase followed by a sudden transition to necrotrophy associated with host necrosis. Little is known about the systematic interaction between fungal pathogenicity and host responses at specific growth stages and the factors triggering the transition. In order to gain some insights into global transcriptome alterations in both host and pathogen during the two phases of the compatible interaction, disease transition was monitored using pathogenesis-related gene markers and H2O2 signature prior to RNA-Seq. Transcriptome analysis revealed that the slow symptomless growth was accompanied by minor metabolic responses and slightly suppressed defences in the host, whereas necrotrophic growth was associated with enhanced host responses involving energy metabolism, transport, signalling, defence and oxidative stress as well as a decrease in photosynthesis. The fungus expresses distinct classes of stage-specific genes encoding potential effectors, probably first suppressing plant defence responses/facilitating the symptomless growth and later triggering life style transition and inducing host necrosis/facilitating the necrotrophic growth. Transport, signalling, anti-oxidative stress mechanisms and apoplastic nutrient acquisition play important roles in the entire infection process of S. tritici. Our findings uncover systematic S. tritici-induced expression profiles of wheat related to specific fungal infection strategies and provide a transcriptome resource for studying both hosts and pathogens in plant-Dothideomycete interactions.


Asunto(s)
Ascomicetos/genética , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Transcriptoma , Triticum/genética , Triticum/microbiología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Triticum/metabolismo
20.
BMC Genomics ; 14: 689, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24098974

RESUMEN

BACKGROUND: The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. RESULTS: RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. CONCLUSIONS: The high-resolution RNA-seq analysis provides a global transcriptional landscape as a complement to the B. rapa genome sequence, which will advance our understanding of the dynamics and complexity of the B. rapa transcriptome. The atlas of gene expression in different tissues will be useful for accelerating research on functional genomics and genome evolution in Brassica species.


Asunto(s)
Brassica rapa/genética , Análisis de Secuencia de ADN , Estadística como Asunto , Transcriptoma/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Empalme Alternativo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...