Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mar Life Sci Technol ; 5(3): 359-372, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37637256

RESUMEN

In mammals, mitofusin 2 (MFN2) is involved in mitochondrial fusion, and suppresses the virus-induced RIG-I-like receptor (RLR) signaling pathway. However, little is known about the function of MFN2 in non-mammalian species. In the present study, we cloned an MFN2 ortholog (LcMFN2) in large yellow croaker (Larimichthys crocea). Phylogenetic analysis showed that MFN2 emerged after the divergence of amphioxus and vertebrates. The protein sequences of MFN2 were well conserved from fish to mammals. LcMFN2 was expressed in all the tissues/organs examined at different levels, and its expression was upregulated in response to poly(I:C) stimulation. Overexpression of LcMFN2 inhibited MAVS-induced type I interferon (IFN) promoter activation and antiviral gene expression. In contrast, knockdown of endogenous LcMFN2 enhanced poly(I:C) induced production of type I IFNs. Additionally, LcMFN2 enhanced K48-linked polyubiquitination of MAVS, promoting its degradation. Also, overexpression of LcMFN2 impaired the cellular antiviral response, as evidenced by the increased expression of viral genes and more severe cytopathic effects (CPE) in cells infected with spring viremia of carp virus (SVCV). These results indicated that LcMFN2 inhibited type I IFN response by degrading MAVS, suggesting its negative regulatory role in cellular antiviral response. Therefore, our study sheds a new light on the regulatory mechanisms of the cellular antiviral response in teleosts. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00189-8.

2.
Food Chem Toxicol ; 179: 113998, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37604300

RESUMEN

Formaldehyde (FA), which is known as an air pollutant, has been proven to induce male infertility. However, the underlying mechanism of FA-induced male infertility remains elusive. In this study, 24 male SD rats were exposed to different levels of FA (0, 0.5, 2.46, and 5 mg/m3) for eight consecutive weeks. Through HE staining and sperm smear, we observed that FA exposure resulted in spermatogenic injury and the sperm quality decreased in rats. The qRT-PCR and Western blot analysis further revealed that GRPR was down-regulated in testicular tissues of FA-exposed rats as well as primary spermatogenic cells. Meanwhile, ZDOCK uncovered an interaction between GRPR and PLCß. In addition, the CCK8, Fluo 3-AM and Flow cytometry results showed that FA exposure suppressed the expression of GRPR, PLCß and IP3R, consequently reducing the Ca2+ concentration in spermatogenic cells, inducing apoptosis and inhibiting proliferation of spermatogenic cells. Moreover, rescue experiments confirmed that promoting GRPR could improve intracellular Ca2+ concentration by upregulating PLCß and IP3R, partially reducing the apoptosis and promoting the proliferation of FA-treated spermatogenic cells. These findings revealed that GRPR participates in spermatogenesis through Ca2+ mediated by the PLCß/IP3R signaling pathway in FA-exposed rats.


Asunto(s)
Formaldehído , Infertilidad Masculina , Semen , Espermatogénesis , Animales , Masculino , Ratas , Regulación hacia Abajo , Formaldehído/efectos adversos , Formaldehído/toxicidad , Fosfolipasa C beta , Ratas Sprague-Dawley , Transducción de Señal , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Bombesina/metabolismo
3.
Foods ; 12(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37444265

RESUMEN

Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.

4.
Nat Prod Res ; : 1-7, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36111829

RESUMEN

A new bicyclic lactam derivatives penicilactam B (1) and a new monocyclic amide penicillamide D (2), along with four known compounds (3-6), were isolated from the fermentation broth of the derived fungus Penicillium rubens PQJ-2. Their structures and stereochemistry were elucidated by comprehensive spectroscopic analyses and quantum ECD calculations. All the compounds were evaluated for their antibacterial activities against Staphylococcus aureus subsp, Candida albicans, Escherichia coli and insecticidal activity against Helicoverpa armigera Hubner. Compounds 1-3 exhibited modest insecticidal activity against H. armigera Hubner.

5.
Int J Biol Macromol ; 218: 335-345, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35870629

RESUMEN

Chitosan-based nanogels are effective carriers for drug delivery due to their biocompatibility and biodegradability. However, the chemically cross-linked nanogels usually require complicated procedures or tough conditions. Herein, we report a simple approach to generate chitosan-based nanogels by photo-crosslinking of poor solvent-induced nanoaggregates without requiring any emulsifying agent, catalyst, or external crosslinker. O-nitrobenzyl alcohol-modified carboxymethyl chitosan was synthesized and self-crosslinked into the nanogels in a mixed solution of ethanol and water under 365 nm light irradiation due to UV-induced primary amine and o-nitrobenzyl alcohol cyclization. The nanogels (CMC-NBA NPs) and lactobionic acid-decorated nanogels (LACMC-NBA NPs) displayed a uniform diameter (~200 nm) and excellent stability under physiological conditions. Notably, the nanogels exhibited a high loading content (~28 %) due to π-π stacking and electrostatic interactions between doxorubicin (DOX) and the carriers. These DOX-loaded nanogels showed rapid drug release under slightly acidic conditions. The cell and animal experiments confirmed that LACMC-NBA NPs increased cellular uptake, improved cytotoxicity in tumor cells, and enhanced growth inhibition in vivo than CMC-NBA NPs. Thus, these photo-crosslinked nanogels possess great potential for DOX delivery.


Asunto(s)
Quitosano , Animales , Quitosano/química , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Geles , Concentración de Iones de Hidrógeno , Nanogeles
6.
Aging (Albany NY) ; 14(8): 3446-3463, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35452413

RESUMEN

Lymphoma is accompanied by the impairment of multiple immune functions. Cytokines play an important role in a variety of immune-related functions and affect the tumor microenvironment. However, the exact regulatory mechanisms between them remain unclear. This study aimed to explore the cytokines expression and function in Hodgkin's lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). We performed a transcriptome integration analysis of 14 lymphoma datasets including 240 Hodgkin's lymphoma, 891 diffuse large B-cell lymphoma, 216 mantle cell lymphoma, and 64 health samples. The results showed that multiple immune functions and signal pathway damage were shared by all three types of lymphoma, and these functions were related to cytokines. Furthermore, through co-expression network and functional interaction network analysis, we identified CXCL14 as a key regulator and it affects cell chemotaxis and migration functions. The functional experiment showed that CXCL14 knockdown inhibited cell migration in MCL cell lines. This study suggested that high expression of CXCL14 may aggravate MCL via promoting cell migration. Our findings provide novel insights into the biology of this disease and would be helpful for the pathogenesis study and drug discovery of lymphomas.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Linfoma de Células del Manto , Movimiento Celular/genética , Quimiocinas CXC/genética , Citocinas , Humanos , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células del Manto/genética , Microambiente Tumoral/genética
7.
Gene ; 829: 146501, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35452709

RESUMEN

Aging is a complex life process that human organs and tissues steadily and continuously decline. Aging has huge heterogeneity, which shows different aging rates among different individuals and in different tissues of the same individual. Many studies of aging are often contradictory and show little common signature. The integrated analysis of these transcriptome datasets will provide an unbiased global view of the aging process. Here, we integrated 8 transcriptome datasets including 757 samples from healthy human blood to study aging from three aspects of gene expression, mutations, and alternative splicing. Surprisingly, we found that transcriptome changes in blood are relatively independent of the chronological age. Further pseudotime analysis revealed two different aging paths (AgingPath1 and AgingPath2) in human blood. The differentially expressed genes (DEGs) along the two paths showed a limited overlap and are enriched in different biological processes. The mutations of DEGs in AgingPath1 are significantly increased in the aging process, while the opposite trend was observed in AgingPath2. Expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) analysis identified 304 important mutations that can affect both gene expression and alternative splicing during aging. Finally, by comparison between aging and Alzheimer's disease, we identified 37 common DEGs in AgingPath1, AgingPath2 and Alzheimer's disease. These genes may contribute to the shift from aging state to Alzheimer's disease. In summary, this study revealed the two aging paths and the related genes and mutations, which provides a new insight into aging and aging-related disease.


Asunto(s)
Empalme Alternativo , Enfermedad de Alzheimer , Envejecimiento/genética , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Humanos , Mutación , Transcriptoma
8.
Front Pharmacol ; 13: 784242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355727

RESUMEN

Background: Traditional Chinese medicine (TCM) has been widely used in the treatment of human diseases. However, the synergistic effects of multiple TCM prescriptions in the treatment of stroke have not been thoroughly studied. Objective of the study: This study aimed to reveal the mechanisms underlying the synergistic effects of these TCM prescriptions in stroke treatment and identify the active compounds. Methods: Herbs and compounds in the Di-Tan Decoction (DTD), Xue-Fu Zhu-Yu Decoction (XFZYD), and Xiao-Xu-Ming Decoction (XXMD) were acquired from the TCMSP database. SEA, HitPick, and TargetNet web servers were used for target prediction. The compound-target (C-T) networks of three prescriptions were constructed and then filtered using the collaborative filtering algorithm. We combined KEGG enrichment analysis, molecular docking, and network analysis approaches to identify active compounds, followed by verification of these compounds with an oxygen-glucose deprivation and reoxygenation (OGD/R) model. Results: The filtered DTD network contained 39 compounds and 534 targets, the filtered XFZYD network contained 40 compounds and 508 targets, and the filtered XXMD network contained 55 compounds and 599 targets. The filtered C-T networks retained approximately 80% of the biological functions of the original networks. Based on the enriched pathways, molecular docking, and network analysis results, we constructed a complex network containing 3 prescriptions, 14 botanical drugs, 26 compounds, 13 targets, and 5 pathways. By calculating the synergy score, we identified the top 5 candidate compounds. The experimental results showed that quercetin, baicalin, and ginsenoside Rg1 independently and synergistically increased cell viability. Conclusion: By integrating pharmacological and chemoinformatic approaches, our study provides a new method for identifying the effective synergistic compounds of TCM prescriptions. The filtered compounds and their synergistic effects on stroke require further research.

9.
Aging Cell ; 21(4): e13595, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35343058

RESUMEN

Although it is well known that metabolic control plays a crucial role in regulating the health span and life span of various organisms, little is known for the systems metabolic profile of centenarians, the paradigm of human healthy aging and longevity. Meanwhile, how to well characterize the system-level metabolic states in an organism of interest remains to be a major challenge in systems metabolism research. To address this challenge and better understand the metabolic mechanisms of healthy aging, we developed a method of genome-wide precision metabolic modeling (GPMM) which is able to quantitatively integrate transcriptome, proteome and kinetome data in predictive modeling of metabolic networks. Benchmarking analysis showed that GPMM successfully characterized metabolic reprogramming in the NCI-60 cancer cell lines; it dramatically improved the performance of the modeling with an R2 of 0.86 between the predicted and experimental measurements over the performance of existing methods. Using this approach, we examined the metabolic networks of a Chinese centenarian cohort and identified the elevated fatty acid oxidation (FAO) as the most significant metabolic feature in these long-lived individuals. Evidence from serum metabolomics supports this observation. Given that FAO declines with normal aging and is impaired in many age-related diseases, our study suggests that the elevated FAO has potential to be a novel signature of healthy aging of humans.


Asunto(s)
Envejecimiento Saludable , Longevidad , Anciano de 80 o más Años , Envejecimiento/genética , Envejecimiento/metabolismo , Humanos , Longevidad/genética , Metabolómica , Transcriptoma/genética
10.
Aging (Albany NY) ; 14(3): 1448-1472, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35150482

RESUMEN

Bacterial infection is one of the most important factors affecting the human life span. Elderly people are more harmed by bacterial infections due to their deficits in immunity. Because of the lack of new antibiotics in recent years, bacterial resistance has increasingly become a serious problem globally. In this study, an antibacterial compound predictor was constructed using the support vector machines and random forest methods and the data of the active and inactive antibacterial compounds from the ChEMBL database. The results showed that both models have excellent prediction performance (mean accuracy >0.9 and mean AUC >0.9 for the two models). We used the predictor to screen potential antibacterial compounds from FDA-approved drugs in the DrugBank database. The screening results showed that 1087 small-molecule drugs have potential antibacterial activity and 154 of them are FDA-approved antibacterial drugs, which accounts for 76.2% of the approved antibacterial drugs collected in this study. Through molecular fingerprint similarity analysis and common substructure analysis, we screened 8 predicted antibacterial small-molecule compounds with novel structures compared with known antibacterial drugs, and 5 of them are widely used in the treatment of various tumors. This study provides a new insight for predicting antibacterial compounds by using approved drugs, the predicted compounds might be used to treat bacterial infections and extend lifespan.


Asunto(s)
Antibacterianos , Aprendizaje Automático , Anciano , Antibacterianos/farmacología , Humanos , Máquina de Vectores de Soporte
12.
Chin Med J (Engl) ; 134(24): 2944-2953, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34665571

RESUMEN

BACKGROUNDS: Azithromycin mass drug administration (MDA) is a key part of the strategy for controlling trachoma. This systematic review aimed to comprehensively summarize the present studies of azithromycin MDA on trachoma; provide an overview of the impact of azithromycin MDA on trachoma in different districts; and explore the possible methods to enhance the effectiveness of azithromycin MDA in hyperendemic districts. METHODS: PubMed, Embase, the Cochrane Central Register of Controlled Trials, Web of Science, and ClinicalTrials.gov were searched up to February 2021 with no language restriction. Studies reporting the effect of azithromycin MDA on trachoma were included. Mathematical modeling studies, animal studies, case reports, and reviews were excluded. The trachomatous inflammation-follicular (TF) <5.0% was used to judge the effect of azithromycin MDA on eliminating trachoma as a public health problem. Two researchers independently conducted the selection process and risk of bias assessment. RESULTS: A total of 1543 studies were screened, of which 67 studies including 13 cluster-randomized controlled trials and 54 non-randomized studies were included. The effect of azithromycin MDA on trachoma was closely related to the baseline prevalence in districts. For the districts with baseline prevalence between 5.0% and 9.9%, a single round of MDA achieved a TF <5.0%. For the districts with baseline between 10.0% and 29.9%, annual MDA for 3 to 5 years reduced TF <5.0%. However, for the districts with high level of baseline prevalence (TF >30.0%), especially with baseline TF >50.0%, annual MDA was unable to achieve the TF <5.0% even after 5 to 7 years of treatment. Quarterly MDA is more effective in controlling trachoma in these hyperendemic districts. CONCLUSIONS: Azithromycin MDA for controlling trachoma depends on the baseline prevalence. The recommendation by the World Health Organization that annual MDA for 3 to 5 years in the districts with TF baseline >10.0% is not appropriate for all eligible districts.


Asunto(s)
Azitromicina , Tracoma , Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , Humanos , Lactante , Administración Masiva de Medicamentos , Prevalencia , Tracoma/tratamiento farmacológico , Tracoma/epidemiología
13.
Aging (Albany NY) ; 13(8): 11833-11859, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885377

RESUMEN

Transcriptome differences between Hodgkin's lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL), which are all derived from B cell, remained unclear. This study aimed to construct lymphoma-specific diagnostic models by screening lymphoma marker genes. Transcriptome data of HL, DLBCL, and MCL were obtained from public databases. Lymphoma marker genes were screened by comparing cases and controls as well as the intergroup differences among lymphomas. A total of 9 HL marker genes, 7 DLBCL marker genes, and 4 MCL marker genes were screened in this study. Most HL marker genes were upregulated, whereas DLBCL and MCL marker genes were downregulated compared to controls. The optimal HL-specific diagnostic model contains one marker gene (MYH2) with an AUC of 0.901. The optimal DLBCL-specific diagnostic model contains 7 marker genes (LIPF, CCDC144B, PRO2964, PHF1, SFTPA2, NTS, and HP) with an AUC of 0.951. The optimal MCL-specific diagnostic model contains 3 marker genes (IGLV3-19, IGKV4-1, and PRB3) with an AUC of 0.843. The present study reveals the transcriptome data-based differences between HL, DLBCL, and MCL, when combined with other clinical markers, may help the clinical diagnosis and prognosis.


Asunto(s)
Biomarcadores de Tumor/genética , Enfermedad de Hodgkin/diagnóstico , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células del Manto/diagnóstico , Modelos Genéticos , Estudios de Casos y Controles , Conjuntos de Datos como Asunto , Diagnóstico Diferencial , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/mortalidad , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/mortalidad , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/mortalidad , Estadificación de Neoplasias , Pronóstico , Supervivencia sin Progresión , Transcriptoma/genética
14.
Sci Prog ; 104(1): 368504211001146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754896

RESUMEN

The ubiquitin-proteasome system (UPS) plays crucial roles in numerous cellular functions. Dysfunction of the UPS shows certain correlations with the pathological changes in Alzheimer's disease (AD). This study aimed to explore the different impairments of the UPS in multiple brain regions and identify hub ubiquitin ligase (E3) genes in AD. The brain transcriptome, blood transcriptome and proteome data of AD were downloaded from a public database. The UPS genes were collected from the Ubiquitin and Ubiquitin-like Conjugation Database. The hub E3 genes were defined as the differentially expressed E3 genes shared by more than three brain regions. E3Miner and UbiBrowser were used to predict the substrate of hub E3. This study shows varied impairment of the UPS in different brain regions in AD. Furthermore, we identify seven hub E3 genes (CUL1, CUL3, EIF3I, NSMCE1, PAFAH1B1, RNF175, and UCHL1) that are downregulated in more than three brain regions. Three of these genes (CUL1, EIF3I, and NSMCE1) showed consistent low expression in blood. Most of these genes have been reported to promote AD, whereas the impact of RNF175 on AD is not yet reported. Further analysis revealed a potential regulatory mechanism by which hub E3 and its substrate genes may affect transcription functions and then exacerbate AD. This study identified seven hub E3 genes and their substrate genes affect transcription functions and then exacerbate AD. These findings may be helpful for the development of diagnostic biomarkers and therapeutic targets for AD.


Asunto(s)
Enfermedad de Alzheimer , Ubiquitina-Proteína Ligasas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Neurotherapeutics ; 18(2): 1064-1080, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33786807

RESUMEN

Brain capillaries are crucial for cognitive functions by supplying oxygen and other nutrients to and removing metabolic wastes from the brain. Recent studies have demonstrated that constriction of brain capillaries is triggered by beta-amyloid (Aß) oligomers via endothelin-1 (ET1)-mediated action on the ET1 receptor A (ETRA), potentially exacerbating Aß plaque deposition, the primary pathophysiology of Alzheimer's disease (AD). However, direct evidence is still lacking whether changes in brain capillaries are causally involved in the pathophysiology of AD. Using APP/PS1 mouse model of AD (AD mice) relative to age-matched negative littermates, we identified that reductions of density and diameter of hippocampal capillaries occurred from 4 to 7 months old while Aß plaque deposition and spatial memory deficit developed at 7 months old. Notably, the injection of ET1 into the hippocampus induced early Aß plaque deposition at 5 months old in AD mice. Conversely, treatment of ferulic acid against the ETRA to counteract the ET1-mediated vasoconstriction for 30 days prevented reductions of density and diameter of hippocampal capillaries as well as ameliorated Aß plaque deposition and spatial memory deficit at 7 months old in AD mice. Thus, these data suggest that reductions of density and diameter of hippocampal capillaries are crucial for initiating Aß plaque deposition and spatial memory deficit at the early stages, implicating the development of new therapies for halting or curing memory decline in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide , Capilares/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Ácidos Cumáricos/administración & dosificación , Presenilina-1 , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Capilares/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Hipocampo/irrigación sanguínea , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/genética
16.
Oncol Rep ; 45(3): 1235-1248, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33650672

RESUMEN

Breast cancer is the most common type of cancer amongst women worldwide, and numerous microRNAs (miRNAs/miRs) are involved in the initiation and progression of breast cancer. The aim of the present study was to identify hub miRNAs and determine the underlying mechanisms regulated by these miRNAs in breast cancer. Breast invasive carcinoma transcriptome data (including mRNAs and miRNAs), and clinical data were acquired from The Cancer Genome Atlas database. Differential gene expression analysis, co­expression network analysis, gene set enrichment analysis (GSEA) and prognosis analysis were used to screen the hub miRNAs and explore their functions. Functional experiments were used to determine the underlying mechanisms of the hub miRNAs in breast cancer cells. The results revealed that low miR150 expression predicted a more advanced disease stage, and was associated with a less favorable prognosis. Through the combined use of five miRNA­target gene prediction tools, 31 potential miR150 target genes were identified. GSEA revealed that low miR150 expression was associated with the upregulation of several cancer­associated signaling pathways, and the downregulation of several tumor suppressor genes. Furthermore, miR150 independently affected overall survival in patients, and interacted with its target genes to indirectly affect overall and disease­free survival. Functional experiments demonstrated that miR150 positively regulated B and T lymphocyte attenuator (BTLA), and the downregulation of miR150 and BTLA combined promoted cell migration. In conclusion, the present study revealed that low miR150 expression was associated with less favorable clinical features, upregulation of several carcinogenic signaling pathways, and poor patient survival. Additionally, a miR150­BTLA axis was suggested to regulate cell viability and migration.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , MicroARNs/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Pronóstico , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Transducción de Señal , Análisis de Supervivencia
17.
Nutr Cancer ; 73(6): 983-995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32590916

RESUMEN

This study was to screen out potential driver long non-coding RNAs (lncRNAs) in lung cancer in Xuanwei (LCXW) differently expressed mRNAs and lncRNAs were detected by gene expression microarrays in 23 paired lung adenocarcinoma and adjacent tissues. Combined bioinformatics analysis was performed to identify potential driver lncRNAs and their potential regulatory relationships. Transcriptome and clinical data in TCGA-LUAD were used as comparison and validation dataset. The comparison of LCXW and TCGA-LUAD revealed significant differences in expression of some genes, signaling pathways affected by differentially expressed genes, and the 5-year survival rate of patients. We identified 14 consistently deregulated mRNAs and 5 lncRNAs as candidate genes, which affected multiple cancer-related pathways and influenced patients' overall survival. By combined bioinformatics analysis, we further identified a potential driver lncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) and proposed its possible regulation mechanism. The low expression of FENDRR was positively correlated with Krüppel-like factor4 (KLF4), KLF4 down-regulation may loss the activation function of cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1C (CDKN1C) and the inhibition function of CyclinB1 (CCNB1), eventually cause excessive cell cycle activation and lead to lung cancer. This study revealed a potential FENDRR-KLF4-cell cycle regulation axis. These results lay an important foundation for further research on the pathogenesis of LCXW and identification of potential novel biomarkers or therapeutic targets.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Neoplasias Pulmonares/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética
18.
Chin Med Sci J ; 35(3): 239-247, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32972501

RESUMEN

Objective To explore novel long non-coding RNA (lncRNA) molecular markers related to bladder cancer prognosis and to construct a prognostic prediction model for bladder cancer patients. Methods LncRNA expression data of patients with bladder cancer were downloaded from TCGA database. Univariate Cox regression and likelihood-based survival analysis were used to discover prognosis related lncRNAs. Functional studies of prognosis related lncRNAs were conducted by co-expression analysis and pathway enrichment analysis. Multivariate Cox regression analysis was used to establish risk score model, and Receiver Operating Characteristic analysis was used to determine the optimal cut-off point of the model. The risk score model was validated through Kaplan Meier estimation method and log-rank test. Results Seven prognosis related lncRNAs (OCIAD1-AS1, RP11-111J6.2, AC079354.3, RP11-553A21.3, RP11-598F7.3, CYP4F35P and RP11-113K21.4) which can predict survival of bladder cancer patient were discovered. Co-expression analysis and pathway analysis of these novel lncRNA signature and their target genes further revealed that these lncRNAs play important roles in the occurrence and development of bladder cancer. Additionally, a seven-lncRNA signature based risk score model for prognostic prediction of bladder cancer patients was established and validated. Notably, we identified the potential significance of two tumor-related antisense lncRNAs (OCIAD1-AS1 and RP11-553A21.3) in the prognosis of bladder cancer. Conclusion Our results suggest that these lncRNA markers may serve as potential prognosis predictors for bladder cancer and deserve further functional verification studies.


Asunto(s)
Biomarcadores de Tumor/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Biomarcadores de Tumor/metabolismo , Cromosomas Humanos/genética , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Sistemas de Lectura Abierta/genética , Pronóstico , ARN Largo no Codificante/genética , Curva ROC , Reproducibilidad de los Resultados , Factores de Riesgo
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(8): 844-853, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-32800031

RESUMEN

OBJECTIVE: To systematically summarize the clinical features of coronavirus disease 2019 (COVID-19) in children. METHODS: PubMed, Embase, Web of Science, The Cochrane Library, CNKI, Weipu Database, and Wanfang Database were searched for clinical studies on COVID-19 in children published up to May 21, 2020. Two reviewers independently screened the articles, extracted data, and assessed the risk of bias of the studies included. A descriptive analysis was then performed for the studies. Related indices between children with COVID-19 and severe acute respiratory syndromes (SARS) or Middle East respiratory syndrome (MERS) were compared. RESULTS: A total of 75 studies were included, with a total of 806 children with COVID-19. The research results showed that the age of the children ranged from 36 hours after birth to 18 years, with a male-female ratio of 1.21 : 1. Similar to SARS and MERS, COVID-19 often occurred with familial aggregation, and such cases accounted for 74.6% (601/806). The children with COVID-19, SARS, and MERS had similar clinical symptoms, mainly fever and cough. Some children had gastrointestinal symptoms. The children with asymptomatic infection accounted for 17.9% (144/806) of COVID-19 cases, 2.5% (2/81) of SARS cases, and 57.1% (12/21) of MERS cases. The children with COVID-19 and MERS mainly had bilateral lesions on chest imaging examination, with a positive rate of lesions of 63.4% (421/664) and 26.3% (5/19) respectively, which were lower than the corresponding positive rates of viral nucleic acid detection, which were 99.8% and 100% respectively. The chest radiological examination of the children with SARS mainly showed unilateral lesion, with a positive rate of imaging of 88.9% (72/81), which was higher than the corresponding positive rate of viral nucleic acid detection (29.2%). Viral nucleic acid was detected in the feces of children with COVID-19 or SARS, with positive rates of 60.2% (56/93) and 71.4% (5/7) respectively. The children with COVID-19 had a rate of severe disease of 4.6% (31/686) and a mortality rate of 0.1% (1/806), the children with SARS had a rate of severe disease of 1.5% (1/68) and a mortality rate of 0%, and those with MERS had a rate of severe disease of 14.3% (3/21) and a mortality rate of 9.5% (2/21). CONCLUSIONS: Children with COVID-19 have similar symptoms to those with SARS or MERS, mainly fever and cough. Asymptomatic infection is observed in all three diseases. Children with COVID-19 or SARS have milder disease conditions than those with MERS. COVID-19 in children often occurs with familial aggregation. Epidemiological contact history, imaging examination findings, and viral nucleic acid testing results are important bases for the diagnosis of COVID-19.


Asunto(s)
Infecciones por Coronavirus/fisiopatología , Neumonía Viral/fisiopatología , Síndrome Respiratorio Agudo Grave/fisiopatología , Síndrome Respiratorio Agudo Grave/virología , Betacoronavirus , COVID-19 , Niño , Tos/virología , Femenino , Fiebre/virología , Humanos , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio , Pandemias , SARS-CoV-2
20.
Aging (Albany NY) ; 12(10): 9882-9914, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461378

RESUMEN

Considerable evidence suggests that metabolic abnormalities are associated with neurodegenerative diseases. This study aimed to conduct a systematic metabolic analysis of Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Human and mouse model microarray datasets were downloaded from the Gene Expression Omnibus database. The metabolic genes and pathways were collected from the Recon 3D human metabolic model. Drug and target information was obtained from the DrugBank database. This study identified ATP1A1, ATP6V1G2, GOT1, HPRT1, MAP2K1, PCMT1 and PLK2 as key metabolic genes that were downregulated in AD, PD and HD. We screened 57 drugs that target these genes, such as digoxin, ouabain and diazoxide. This study constructed multigene diagnostic models for AD, PD and HD by using metabolic gene expression profiles in blood, all models showed high accuracy (AUC > 0.8) both in the experimental and validation sets. Furthermore, analysis of animal models showed that there was almost no consistency among the metabolic changes between mouse models and human diseases. This study systematically revealed the metabolic damage among AD, PD, and HD and uncovered the differences between animal models and human diseases. This information may be helpful for understanding the metabolic mechanisms and drug development for neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Fármacos del Sistema Nervioso Central/uso terapéutico , Enfermedad de Huntington/genética , Modelos Genéticos , Enfermedad de Parkinson/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Desarrollo de Medicamentos , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Ratones , Terapia Molecular Dirigida , Enfermedad de Parkinson/tratamiento farmacológico , Reproducibilidad de los Resultados , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...