Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
1.
Brain Behav Immun ; 119: 945-964, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759736

RESUMEN

Post-traumatic stress disorder (PTSD) is a debilitating mental health disease related to traumatic experience, and its treatment outcomes are unsatisfactory. Accumulating research has indicated that cannabidiol (CBD) exhibits anti-PTSD effects, however, the underlying mechanism of CBD remains inadequately investigated. Although many studies pertaining to PTSD have primarily focused on aberrations in neuronal functioning, the present study aimed to elucidate the involvement and functionality of microglia/macrophages in PTSD while also investigated the modulatory effects of CBD on neuroinflammation associated with this condition. We constructed a modified single-prolonged stress (SPS) mice PTSD model and verified the PTSD-related behaviors by various behavioral tests (contextual freezing test, elevated plus maze test, tail suspension test and novel object recognition test). We observed a significant upregulation of Iba-1 and alteration of microglial/macrophage morphology within the prefrontal cortex and hippocampus, but not the amygdala, two weeks after the PTSD-related stress, suggesting a persistent neuroinflammatory phenotype in the PTSD-modeled group. CBD (10 mg/kg, i.p.) inhibited all PTSD-related behaviors and reversed the alterations in both microglial/macrophage quantity and morphology when administered prior to behavioral assessments. We further found increased pro-inflammatory factors, decreased PSD95 expression, and impaired synaptic density in the hippocampus of the modeled group, all of which were also restored by CBD treatment. CBD dramatically increased the level of anandamide, one of the endocannabinoids, and cannabinoid type 2 receptors (CB2Rs) transcripts in the hippocampus compared with PTSD-modeled group. Importantly, we discovered the expression of CB2Rs mRNA in Arg-1-positive cells in vivo and found that the behavioral effects of CBD were diminished by CB2Rs antagonist AM630 (1 mg/kg, i.p.) and both the behavioral and molecular effects of CBD were abolished in CB2Rs knockout mice. These findings suggest that CBD would alleviate PTSD-like behaviors in mice by suppressing PTSD-related neuroinflammation and upregulation and activation of CB2Rs may serve as one of the underlying mechanisms for this therapeutic effect. The present study offers innovative experimental evidence supporting the utilization of CBD in PTSD treatment from the perspective of its regulation of neuroinflammation, and paves the way for leveraging the endocannabinoid system to regulate neuroinflammation as a potential therapeutic approach for psychiatric disorders.

2.
Pharmacol Res ; : 107224, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777113

RESUMEN

INTRODUCTION: Current anti-rheumatic drugs are primarily modulating immune cell activation, yet their effectiveness remained suboptimal. Therefore, novel therapeutics targeting alternative mechanisms, such as synovial activation, is urgently needed. OBJECTIVES: To explore the role of Midline-1 (Mid1) in synovial activation. METHODS: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were used to establish a subcutaneous xenograft model. Wild-type C57BL/6, Mid1-/-, Dpp4-/-, and Mid1-/-Dpp4-/- mice were used to establish a collagen-induced arthritis model. Cell viability, cell cycle, qPCR and western blotting analysis were used to detect MH7A proliferation, dipeptidyl peptidase-4 (DPP4) and Mid1 levels. Co-immunoprecipitation and proteomic analysis identified the candidate protein of Mid1 substrates. Ubiquitination assays were used to determine DPP4 ubiquitination status. RESULTS: A notable increase in Mid1, an E3 ubiquitin ligase, in human RA synovial tissue by GEO dataset analysis, and this elevation was confirmed in a collagen-induced mouse arthritis model. Notably, deletion of Mid1 in a collagen-induced arthritis model completely protected mice from developing arthritis. Subsequent overexpression and knockdown experiments on MH7A, a human synoviocyte cell line, unveiled a previously unrecognized role of Mid1 in synoviocyte proliferation and migration, the key aspects of synovial activation. Co-immunoprecipitation and proteomic analysis identified DPP4 as the most significant candidate of Mid1 substrates. Mechanistically, Mid1 promoted synoviocyte proliferation and migration by inducing ubiquitin-mediated proteasomal degradation of DPP4. DPP4 deficiency led to increased proliferation, migration, and inflammatory cytokine production in MH7A, while reconstitution of DPP4 significantly abolished Mid1-induced augmentation of cell proliferation and activation. Additionally, double knockout model showed that DPP4 deficiency abolished the protective effect of Mid1 on arthritis. CONCLUSION: Overall, our findings suggest that the ubiquitination of DPP4 by Mid1 promotes synovial cell proliferation and invasion, exacerbating synovitis in RA. These results reveal a novel mechanism that controls synovial activation, positioning Mid1 as a promising target for therapeutic intervention in RA.

3.
Support Care Cancer ; 32(6): 377, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780815

RESUMEN

PURPOSE: To explore symptom clusters and interrelationships using a network analysis approach among symptoms in patients with lung tumors who underwent computed tomography (CT)-guided microwave ablation (MWA). METHODS: A longitudinal study was conducted, and 196 lung tumor patients undergoing MWA were recruited and were measured at 24 h, 48 h, and 72 h after MWA. The Chinese version of the MD Anderson Symptom Inventory and the Revised Lung Cancer Module were used to evaluate symptoms. Network analyses were performed to explore the symptom clusters and interrelationships among symptoms. RESULTS: Four stable symptom communities were identified within the networks. Distress, weight loss, and chest tightness were the central symptoms. Distress, and weight loss were also the most key bridge symptoms, followed by cough. Three symptom networks were temporally stable in terms of symptom centrality, global connectivity, and network structure. CONCLUSION: Our findings identified the central symptoms, bridge symptoms, and the stability of symptom networks of patients with lung tumors after MWA. These network results will have important implications for future targeted symptom management intervention development. Future research should focus on developing precise interventions for targeting central symptoms and bridge symptoms to promote patients' health.


Asunto(s)
Neoplasias Pulmonares , Microondas , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Pulmonares/cirugía , Masculino , Femenino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Estudios Longitudinales , Microondas/uso terapéutico , Anciano , Adulto , Técnicas de Ablación/métodos
4.
J Med Chem ; 67(10): 7921-7934, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38713486

RESUMEN

CARM1, belonging to the protein arginine methyltransferase (PRMT) family, is intricately associated with the progression of cancer and is viewed as a promising target for both cancer diagnosis and therapy. However, the number of specific and potent CARM1 inhibitors is limited. We herein discovered a CARM1 inhibitor, iCARM1, that showed better specificity and activity toward CARM1 compared to the known CARM1 inhibitors, EZM2302 and TP-064. Similar to CARM1 knockdown, iCARM1 suppressed the expression of oncogenic estrogen/ERα-target genes, whereas activated type I interferon (IFN) and IFN-induced genes (ISGs) in breast cancer cells. Consequently, iCARM1 potently suppressed breast cancer cell growth both in vitro and in vivo. The combination of iCARM1 with either endocrine therapy drugs or etoposide demonstrated synergistic effects in inhibiting the growth of breast tumors. In summary, targeting CARM1 by iCARM1 effectively suppresses breast tumor growth, offering a promising therapeutic approach for managing breast cancers in clinical settings.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Proteína-Arginina N-Metiltransferasas , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Femenino , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico
5.
BMC Cancer ; 24(1): 633, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783271

RESUMEN

BACKGROUND: PD-L1 overexpression is commonly observed in various malignancies and is strongly correlated with poor prognoses for cancer patients. Moreover, PD-L1 has been shown to play a significant role in promoting angiogenesis and epithelial-mesenchymal transition (EMT) processes across different cancer types. METHODS: The relationship between PD-L1 and vasculogenic mimicry as well as epithelial-mesenchymal transition (EMT) was explored by bioinformatics approach and immunohistochemistry. The functions of PD-L1 in regulating the expression of ZEB1 and the EMT process were assessed by Western blotting and q-PCR assays. The impact of PD-L1 on the migratory and proliferative capabilities of A549 and H1299 cells was evaluated through wound healing, cell invasion, and CCK8 assays following siRNA-mediated PD-L1 knockdown. Tube formation assay was utilized to evaluate the presence of VM structures. RESULTS: In this study, increased PD-L1 expression was observed in A549 and H1299 cells compared to normal lung epithelial cells. Immunohistochemical analysis revealed a higher prevalence of VM structures in the PD-L1-positive group compared to the PD-L1-negative group. Additionally, high PD-L1 expression was also found to be significantly associated with advanced TNM stage and increased metastasis. Following PD-L1 knockdown, NSCLC cells exhibited a notable reduction in their ability to form tube-like structures. Moreover, the levels of key EMT and VM-related markers, including N-cadherin, MMP9, VE-cadherin, and VEGFA, were significantly decreased, while E-cadherin expression was upregulated. In addition, the migration and proliferation capacities of both cell lines were significantly inhibited after PD-L1 or ZEB1 knockdown. CONCLUSIONS: Knockdown PD-L1 can inhibit ZEB1-mediated EMT, thereby hindering the formation of VM in NSCLC.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Técnicas de Silenciamiento del Gen , Neoplasias Pulmonares , Neovascularización Patológica , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Humanos , Transición Epitelial-Mesenquimal/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Línea Celular Tumoral , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Células A549 , Persona de Mediana Edad
6.
Eur J Public Health ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573176

RESUMEN

BACKGROUND: The American Heart Association recently released an updated algorithm for evaluating cardiovascular health-Life's Essential 8 (LE8). However, the associations between changes in LE8 score over time and risk of cardiovascular disease (CVD) remain unclear. METHODS: We investigated associations between 6-year changes (2006-12) in LE8 score and risk of subsequent CVD events (2012-20) among 53 363 Chinese men and women from the Kailuan Study, who were free from CVD in 2012. The LE8 score was calculated based on eight components: diet quality, physical activity, smoking status, sleep health, body mass index, blood lipids, blood glucose and blood pressure. Multivariable-adjusted Cox proportional-hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: We documented 4281 incident CVD cases during a median of 7.7 years of follow-up. Compared with participants whose LE8 scores remained stable in a 6-year period, those with the large increases of LE8 score over the 6-year period had a lower risk of CVD, heart disease and stroke in the subsequent 8 years [HRs and 95% CIs: 0.67 (0.64, 0.70) for CVD, 0.65 (0.61, 0.69) for heart disease, 0.71 (0.67, 0.76) for stroke, all Ptrend < 0.001]. Conversely, those with the large decreases of LE8 score had 47%, 51% and 41% higher risk for CVD, heart disease and stroke, respectively. These associations were consistent across the subgroups stratified by risk factors. CONCLUSIONS: Improving LE8 score in a short- and moderate-term was associated with a lower CVD risk, whereas decreased LE8 score over time was associated with a higher risk.

7.
Antimicrob Resist Infect Control ; 13(1): 42, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616284

RESUMEN

BACKGROUND: COVID-19 and bacterial/fungal coinfections have posed significant challenges to human health. However, there is a lack of good tools for predicting coinfection risk to aid clinical work. OBJECTIVE: We aimed to investigate the risk factors for bacterial/fungal coinfection among COVID-19 patients and to develop machine learning models to estimate the risk of coinfection. METHODS: In this retrospective cohort study, we enrolled adult inpatients confirmed with COVID-19 in a tertiary hospital between January 1 and July 31, 2023, in China and collected baseline information at admission. All the data were randomly divided into a training set and a testing set at a ratio of 7:3. We developed the generalized linear and random forest models for coinfections in the training set and assessed the performance of the models in the testing set. Decision curve analysis was performed to evaluate the clinical applicability. RESULTS: A total of 1244 patients were included in the training cohort with 62 healthcare-associated bacterial/fungal infections, while 534 were included in the testing cohort with 22 infections. We found that patients with comorbidities (diabetes, neurological disease) were at greater risk for coinfections than were those without comorbidities (OR = 2.78, 95%CI = 1.61-4.86; OR = 1.93, 95%CI = 1.11-3.35). An indwelling central venous catheter or urinary catheter was also associated with an increased risk (OR = 2.53, 95%CI = 1.39-4.64; OR = 2.28, 95%CI = 1.24-4.27) of coinfections. Patients with PCT > 0.5 ng/ml were 2.03 times (95%CI = 1.41-3.82) more likely to be infected. Interestingly, the risk of coinfection was also greater in patients with an IL-6 concentration < 10 pg/ml (OR = 1.69, 95%CI = 0.97-2.94). Patients with low baseline creatinine levels had a decreased risk of bacterial/fungal coinfections(OR = 0.40, 95%CI = 0.22-0.71). The generalized linear and random forest models demonstrated favorable receiver operating characteristic curves (ROC = 0.87, 95%CI = 0.80-0.94; ROC = 0.88, 95%CI = 0.82-0.93) with high accuracy, sensitivity and specificity of 0.86vs0.75, 0.82vs0.86, 0.87vs0.74, respectively. The corresponding calibration evaluation P statistics were 0.883 and 0.769. CONCLUSIONS: Our machine learning models achieved strong predictive ability and may be effective clinical decision-support tools for identifying COVID-19 patients at risk for bacterial/fungal coinfection and guiding antibiotic administration. The levels of cytokines, such as IL-6, may affect the status of bacterial/fungal coinfection.


Asunto(s)
COVID-19 , Coinfección , Infección Hospitalaria , Micosis , Adulto , Humanos , Pacientes Internos , Coinfección/epidemiología , Interleucina-6 , Estudios Retrospectivos , COVID-19/epidemiología , Infección Hospitalaria/epidemiología , Aprendizaje Automático , Micosis/epidemiología , Atención a la Salud
9.
Artículo en Inglés | MEDLINE | ID: mdl-38598686

RESUMEN

Clathrates are potential "phonon-glass, electron-crystal" thermoelectric semiconductors, whose structure of polyhedron stacks is very attractive. However, their mechanical properties have not yet met the requirements of industrial applications. Here, we report the ideal strength of element-substituted type-I and type-VIII clathrates and the shear deformation mechanism by using density functional theory. The results show that the framework element is the determinant of the intrinsic mechanical properties of the clathrates and is affected by sequential weakening of Si-Ge-Sn. The highest ideal shear strength is 8.71 GPa for I-Ba8Au6Si40 along the (110)/[001] slip system, which is attributed to the formation of higher-energy Si-Si covalent bonds. Meanwhile, the ideal shear strength of Ba-filled I/VIII clathrates (4.51/2.65 GPa) is higher than that of Sr-filled clathrates (3.64 GPa/1.91 GPa). In addition, the strength and ultimate strain of VIII-Ba8Ga16Sn30 can be significantly increased by the structural coordination accommodating with the stiffness of the Ga-Ge bond to achieve simultaneous bond breaking. Our findings demonstrate that the element substitution strategy is an effective approach for designing highly robust clathrates.

10.
Adv Mater ; : e2313752, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576272

RESUMEN

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.

11.
Colloids Surf B Biointerfaces ; 238: 113881, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608460

RESUMEN

Hydrogels as wound dressing have attracted extensive attention in past decade because they can provide moist microenvironment to promote wound healing. Herein, this research designed a multifunctional hydrogel with antibacterial property and antioxidant activity fabricated from quaternary ammonium bearing light emitting quaternized TPE-P(DAA-co-DMAPMA) (QTPDD) and poly(aspartic hydrazide) (PAH). The protocatechuic aldehyde (PCA) grafted to the hydrogel through dynamic bond endowed the hydrogel with antioxidant activity and the tranexamic acid (TXA) was loaded to enhance the hemostatic performance. The hydrogel possesses preferable gelation time for injectable application, good antioxidant property and tissue adhesion, improved hemostatic performance fit for wound repairing. Furthermore, the hydrogel has excellent antimicrobial property to both E. coli and S. aureus based on quaternary ammonium structure. The hydrogel also showed good biocompatibility and the in vivo experiments proved this hydrogel can promote the wound repairing rate. This study suggests that TXA/hydrogel with quaternary ammonium structure and dynamic grafted PCA have great potential in wound healing applications.


Asunto(s)
Antibacterianos , Antioxidantes , Escherichia coli , Hidrogeles , Staphylococcus aureus , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Animales , Hemostáticos/química , Hemostáticos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Polímeros/química , Polímeros/farmacología , Acrilamidas/química , Acrilamidas/farmacología , Péptidos/farmacología , Péptidos/química
12.
Womens Health Rep (New Rochelle) ; 5(1): 334-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596477

RESUMEN

Intravascular leiomyoma (IVL) is usually defined as a histologically benign leiomyoma that originates in a uterine fibroid or the intrauterine vein wall and grows and expands intravenously. We report a case in which pelvic IVL was detected early and discuss the early diagnosis of and best treatment for this tumor.

13.
J Med Chem ; 67(7): 5744-5757, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38553427

RESUMEN

To develop a next-generation metal agent and dual-agent multitargeted combination therapy, we developed a copper (Cu) compound based on the properties of the human serum albumin (HSA)-indomethacin (IND) complex to remodel the tumor microenvironment (TME). We optimized a series of Cu(II) isopropyl 2-pyridyl ketone thiosemicarbazone compounds to obtain a Cu(II) compound (C4) with significant cytotoxicity and then constructed an HSA-IND-C4 complex (HSA-IND-C4) delivery system. IND and C4 bind to the hydrophobic cavities of the IB and IIA domains of HSA, respectively. In vivo, the HSA-IND-C4 not only showed enhanced antitumor efficacy relative to C4 and C4 + IND but also improved their targeting ability and decreased their side effects. The antitumor mechanism of C4 + IND involved acting on the different components of the TME. IND inhibited tumor-related inflammation, while C4 not only induced apoptosis and autophagy of cancer cells but also inhibited tumor angiogenesis.


Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Tiosemicarbazonas , Humanos , Albúmina Sérica Humana/química , Cobre/química , Albúmina Sérica/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/uso terapéutico , Indometacina/uso terapéutico , Microambiente Tumoral , Profármacos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias/tratamiento farmacológico
14.
Sci Rep ; 14(1): 5351, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438512

RESUMEN

This study aims at suggesting an end-to-end algorithm based on a U-net-optimized generative adversarial network to predict anterior neck lower jaw angles (ANLJA), which are employed to define fetal head posture (FHP) during nuchal translucency (NT) measurement. We prospectively collected 720 FHP images (half hyperextension and half normal posture) and regarded manual measurement as the gold standard. Seventy percent of the FHP images (half hyperextension and half normal posture) were used to fit models, and the rest to evaluate them in the hyperextension group, normal posture group (NPG), and total group. The root mean square error, explained variation, and mean absolute percentage error (MAPE) were utilized for the validity assessment; the two-sample t test, Mann-Whitney U test, Wilcoxon signed-rank test, Bland-Altman plot, and intraclass correlation coefficient (ICC) for the reliability evaluation. Our suggested algorithm outperformed all the competitors in all groups and indices regarding validity, except for the MAPE, where the Inception-v3 surpassed ours in the NPG. The two-sample t test and Mann-Whitney U test indicated no significant difference between the suggested method and the gold standard in group-level comparison. The Wilcoxon signed-rank test revealed significant differences between our new approach and the gold standard in personal-level comparison. All points in Bland-Altman plots fell between the upper and lower limits of agreement. The inter-ICCs of ultrasonographers, our proposed algorithm, and its opponents were graded good reliability, good or moderate reliability, and moderate or poor reliability, respectively. Our proposed approach surpasses the competition and is as reliable as manual measurement.


Asunto(s)
Mandíbula , Medida de Translucencia Nucal , Humanos , Femenino , Embarazo , Reproducibilidad de los Resultados , Mandíbula/diagnóstico por imagen , Feto/diagnóstico por imagen , Atención Prenatal
15.
Cell Mol Life Sci ; 81(1): 121, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457049

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood. LUESCC was upregulated in ESCC tissues compared with adjacent normal tissues, which was associated with gender, deep invasion, lymph node metastasis, and poor prognosis of ESCC patients. LUESCC was mainly localized in the cytoplasm of ESCC cells. Knockdown of LUESCC inhibited cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth in vivo. Mechanistic investigation indicated that LUESCC functions as a ceRNA by sponging miR-6785-5p to enhance NRSN2 expression, which is critical for the malignant behaviors of ESCC. Furthermore, ASO targeting LUESCC substantially suppressed ESCC both in vitro and in vivo. Collectively, these data demonstrate that LUESCC may exerts its oncogenic role by sponging miR-6785-5p to promote NRSN2 expression in ESCC, providing a potential diagnostic marker and therapeutic target for ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , Progresión de la Enfermedad , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
16.
Exp Cell Res ; 437(1): 113996, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508327

RESUMEN

Non-small cell lung cancer (NSCLC) is a kind of highly malignant tumor. Studies have shown that Vasculogenic mimicry (VM) may be responsible for dismal prognosis in NSCLC. Immunotherapy with programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) has significantly altered the treatment of assorted cancers, including NSCLC, but its role and mechanism in the formation of Vasculogenic mimicry (VM) in NSCLC remains unclear. This study aimed to investigate the role of the anti-PD-L1 antibody in the formation of VM in NSCLC and its possible mechanisms. The results showed that anti-PD-L1 antibody therapy could inhibit the growth of NSCLC-transplanted tumors and reduce the formation of VMs. In addition, this study found that anti-PD-L1 antibodies could increase the expression of the epithelial-mesenchymal transition (EMT) related factor E-cadherin. zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor regulating EMT. Knocking down ZEB1 could significantly inhibit tumor growth, as well as the expression of VE-cadherin and mmp2, while remarkably increase the expression of E-cadherin. During this process, the formation of VM was inhibited by knowing down ZEB1 in both in vitro and in vivo experiments of the constructed ZEB1 knockdown stable transfected cell strains. Therefore, in this study, we found that anti-PD-L1 antibodies may reduce the formation of VMs by inhibiting the EMT process.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pulmonares/genética
17.
Chem Biol Interact ; 392: 110926, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431053

RESUMEN

Metabolic reprogramming enables cancer cells to generate energy mainly through aerobic glycolysis, which is achieved by increasing the expression levels of glycolysis-related enzymes. Therefore, the development of drugs targeting aerobic glycolysis could be an effective strategy for cancer treatment. Icaritin (ICT) is an active ingredient from the Chinese herbal plant Epimedium with several biological activities, but its anti-cancer mechanism remains inconclusive. Using normal hepatocytes and hepatoma cells, our results showed that ICT suppressed cell proliferation and clonal formation and decreased glucose consumption and lactate production in liver cancer cells. In consistent, the mRNA and protein levels of several aerobic glycolysis-related genes were decreased upon ICT treatment. Furthermore, our results demonstrated that the expression levels of the aerobic glycolysis-related proteins were correlated with the p53 status in hepatoma cells. Using PFT-α or siRNA-p53, our results confirmed that ICT regulated aerobic glycolysis in a p53-dependent manner. In addition, ICT was found to stabilize p53 at the post-translational level which might be mediated by inhibiting MDM2 expression and affecting its interaction with p53. Finally, our results demonstrated that ICT increased the levels of ROS that activated p53 via the p38 MAPK pathway. In conclusion, ICT increased intracellular ROS levels in liver cancer cells, which promoted the stabilization and activation of p53, inhibiting the expression of aerobic glycolysis-related genes and glycolysis, and ultimately leading to the suppression of liver cancer development.


Asunto(s)
Carcinoma Hepatocelular , Flavonoides , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Glucólisis , Proliferación Celular , Línea Celular Tumoral
18.
Front Oncol ; 14: 1376916, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525426

RESUMEN

Lung cancer, ranking second globally in both incidence and high mortality among common malignant tumors, presents a significant challenge with frequent occurrences of drug resistance despite the continuous emergence of novel therapeutic agents. This exacerbates disease progression, tumor recurrence, and ultimately leads to poor prognosis. Beyond acquired resistance due to genetic mutations, mounting evidence suggests a critical role of epigenetic mechanisms in this process. Numerous studies have indicated abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with the abnormal activation of certain HMTs closely linked to drug resistance. HMTs mediate drug tolerance in lung cancer through pathways involving alterations in cellular metabolism, upregulation of cancer stem cell-related genes, promotion of epithelial-mesenchymal transition, and enhanced migratory capabilities. The use of HMT inhibitors also opens new avenues for lung cancer treatment, and targeting HMTs may contribute to reversing drug resistance. This comprehensive review delves into the pivotal roles and molecular mechanisms of HMTs in drug resistance in lung cancer, offering a fresh perspective on therapeutic strategies. By thoroughly examining treatment approaches, it provides new insights into understanding drug resistance in lung cancer, supporting personalized treatment, fostering drug development, and propelling lung cancer therapy into novel territories.

19.
Cell Mol Immunol ; 21(5): 479-494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38443447

RESUMEN

Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one ß-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 ß-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many ß-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.


Asunto(s)
Amiloide , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH , VIH-1 , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Humanos , Amiloide/metabolismo , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Proteínas Amiloidogénicas/metabolismo , Virión/metabolismo , Péptidos/metabolismo , Péptidos/química , Péptidos/farmacología
20.
J Med Virol ; 96(3): e29454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445768

RESUMEN

Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.


Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , Vacunas Combinadas , Proteínas Fúngicas , Saccharomyces cerevisiae/genética , COVID-19/prevención & control , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA