Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Biotechnol Bioeng ; 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39482764

RESUMEN

1,5-Pentanediol (1,5-PDO) is an important five-carbon alcohol, widely used in polymer and pharmaceutical industries. Considering the substantial energy (ATP and NADPH) requirements of previous pathways, an energy-conserving artificial pathway with a higher theoretical yield (0.75 mol/mol glucose) was designed and constructed in this study. In this pathway, lysine is converted into 1,5-PDO by decarboxylation, two transamination, and two reduction reactions. For the purpose of full pathway construction, 5-aminopetanal reductase and 5-amino-1-pentanol (5-APO) transaminase were identified and characterized. By implementing strategies such as modular optimization of gene expression, enhancing lysine biosynthesis and increasing NADPH supply, the engineered strains were able to produce 1502.8 mg/L 5-APO and 726.2 mg/L 1,5-PDO in shake flasks and 11.7 g/L 1,5-PDO in a 3 L bioreactor. This work provides a new and promising pathway for the efficient production of 5-APO and 1,5-PDO.

2.
Front Pharmacol ; 15: 1407525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318781

RESUMEN

Background: Prostate cancer (PCa) is the most common non-cutaneous malignancy in men globally. Sappan lignum, which exists in the heartwood of Caesalpinia sappan L., has antitumor effects; however, its exact mechanism of action remains unclear. This study elucidated the underlying mechanisms of Sappan lignum in PCa through network pharmacology approaches and molecular docking techniques. Moreover, the therapeutic effects of Sappan lignum on PCa were verified through in vitro experiments. Methods: The constituent ingredients of Sappan lignum were retrieved from the HERB database. Active plant-derived compounds of Sappan lignum were screened based on gastrointestinal absorption and gastric drug properties. Disease targets for PCa were screened using unpaired and paired case datasets from the Gene Expression Omnibus. Intersection targets were used for gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Core targets were identified through topological analysis parameters and their clinical relevance was validated through The Cancer Genome Atlas database. The affinity between the phytochemicals of Sappan lignum and core proteins was verified using the molecular docking technique. Validation experiments confirmed the significant potential of Sappan lignum in treating PCa. Results: Twenty-one plant-derived compounds of Sappan lignum and 821 differentially expressed genes associated with PCa were collected. Among 32 intersection targets, 8 were screened according to topological parameters. KEGG analysis indicated that the antitumor effects of Sappan lignum on PCa were primarily associated with the p53 pathway. The molecular docking technique demonstrated a strong affinity between 3-deoxysappanchalcone (3-DSC) and core proteins, particularly cyclin B1 (CCNB1). CCNB1 expression correlated with clinicopathological features in patients with PCa. Experimental results revealed that 3-DSC exhibited anti-proliferative, anti-migratory, and pro-apoptotic effects on 22RV1 and DU145 cells while also causing G2/M phase cell cycle arrest, potentially through modulating the p53/p21/CDC2/CCNB1 pathway. Conclusion: This research highlights the promising therapeutic potential of Sappan lignum in treating PCa, with a particular focus on targeting the p53 pathway.

3.
J Inflamm Res ; 17: 5543-5553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185106

RESUMEN

Background: We conducted a post-hoc analysis of the RICAMIS trial to investigate the effect of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune inflammation index (SII) on the efficacy of remote ischemic conditioning treatment. Methods: In this post-hoc analysis, NLR, PLR, and SII were measured before randomization. Patients were divided into two groups based on their cut-off values: high vs low NLR, high vs low PLR, and high vs low SII groups. Each group was further subdivided into RIC and control groups. The primary endpoint was a poor outcome (mRS 2-6 at 90 days). Differences in the primary endpoint between the RIC and control subgroups were compared, and the interactions of treatment assignment with NLR, PLR, and SII were evaluated. Results: A total of 1679 patients were included in the final analysis. Compared with the control group, RIC significantly improved functional outcomes regardless of the inflammation status. The improved probability of poor outcome in the RIC vs control group was numerically greater in the high vs low inflammation group (NLR, 7.8% vs 5.1%; PLR, 7% vs 6.5%; SII, 9% vs 5.3%). However, we did not find an interaction effect of an intervention (RIC or control) with different NLR, PLR, or SII on clinical outcomes (P > 0.05). In addition, the NLR and SII were independently associated with functional outcomes in all patients, regardless of whether they received RIC. Conclusion: Inflammation may not affect the efficacy of RIC in patients with acute moderate ischemic stroke, although a lower probability of poor outcome at 90 days was identified in patients with a high vs low inflammatory status.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39052060

RESUMEN

Xiatianwu is a traditional Chinese medicine. This study investigates the function of Xiatianwu in treating HCC through database analyses and in vitro experiments. The active ingredients of Xiatianwu were identified from TCMSP and HERB databases and their targets were predicted by Swiss TargetPrediction. The HCC dataset was screened using the GEO database, and the differentially expressed genes between HCC and non-tumor liver tissues were analyzed to identify overlapping targets with Xiatianwu. The intersecting targets underwent enrichment analysis using R software to elucidate the molecular mechanisms of Xiatianwu against HCC. Core targets were identified using the PPI network and MCODE algorithm. Clinical relevance and disease prognosis in HCC were verified using the TCGA database. Meanwhile, binding affinities among components and targets were validated with molecular docking. Finally, the anti-HCC efficacy of the active ingredient was validated in vitro. Our findings revealed that eight active ingredients of Xiatianwu interacted with 11 key targets, providing anti-HCC efficacy. Molecular docking indicated that bicuculline and fumarine exhibited superior binding abilities. Bicuculline, a representative ingredient of Xiatianwu, was chosen for in vitro validation. Results demonstrated that bicuculline, in a dose-dependent manner inhibited HCC cell viability, reduced migration, suppressed the G0/M cell cycle, and decreased core protein expression. Xiatianwu demonstrates significant potential for clinical application in treating HCC. Bicuculline, a key active ingredient of Xiatianwu, exerts anti-HCC effects by inhibiting the cell cycle.

5.
Front Plant Sci ; 15: 1372385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872879

RESUMEN

The judicious management of water and nitrogen (N) is pivotal for augmenting crop productivity and N use efficiency, while also mitigating environmental concerns. With the advent of the High-Farmland Construction Program in China, one-off irrigation has become feasible for most dryland fields, presenting a novel opportunity to explore the synergistic strategies of water and N management. This study delves into the impact of one-off alternate furrow irrigation (AFI) and topdressing N fertilizer (TN) on soil nitrate-N distribution, and N productivity-including plant N accumulation, translocation, and allocation, and grain yield, protein content, N use efficiency of winter wheat (Triticum aestivum L.) in 2018-2019 and 2019-2020. Experimental treatments administered at the jointing stage comprised of two irrigation methods-every (EFI) and alternative (AFI) furrow irrigation at 75 mm, and two topdressing N rates-0 (NTN) and 60 (TN) kg N ha-1. Additionally, a conventional local farmer practice featuring no irrigation and no topdressing N (NINTN) was served as control. Compared to NINTN, EFINTN substantially increased aboveground N accumulation, grain yield, and protein yield, albeit with a reduction in grain protein content by 8.1%-10.6%. AFI, in turn, led to higher nitrate-N accumulation in the 60-160 cm soil depth at booting and anthesis, but diminished levels at maturity, resulting in a significant surge in N accumulation from anthesis to maturity and its contribution to grain, N fertilizer partial factor productivity (PFPN), and N uptake efficiency (NUPE), thereby promoting grain yield by 9.9% and preserving grain protein content. Likewise, TN enhanced soil nitrate-N at key growth stages, reflected in marked improvements in N accumulation both from booting to anthesis and from anthesis to maturity, as well as in grain yield, protein content, and protein yield. The combination of AFI and TN (AFITN) yielded the highest grain yield, protein content, with PFPN, NUPE, and N internal efficiency outstripping those of EFINTN, but not AFINTN. In essence, one-off AFI coupled with TN at the jointing stage is a promising strategy for optimizing soil nitrate-N and enhancing wheat N productivity in dryland where one-off irrigation is assured.

6.
Cancer Lett ; 598: 217094, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945204

RESUMEN

Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.


Asunto(s)
Electroacupuntura , Glucólisis , Lactoilglutatión Liasa , Neovascularización Patológica , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Electroacupuntura/métodos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Lactoilglutatión Liasa/metabolismo , Lactoilglutatión Liasa/genética , Ratones Endogámicos BALB C , Neovascularización Patológica/metabolismo , Paclitaxel/farmacología , Piruvaldehído/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
7.
Hum Exp Toxicol ; 43: 9603271241251447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720657

RESUMEN

PURPOSE: To explore the effect of acacetin on subarachnoid hemorrhage (SAH) and its possible mechanism. METHODS: SAH model of rat was established, and intraperitoneally injected with three doses of acacetin. To verify the role of PERK pathway, we used the CCT020312 (PERK inhibitor) and Tunicamycin (activators of endoplasmic reticulum stress). The SAH score, neurological function score, brain edema content, and Evans blue (EB) exudate were evaluated. Western blot was used to determine the expression of inflammation-associated proteins and PERK pathway. The activation of microglia was also determined through Iba-1 detection. TEM and immunofluorescence staining of LC3B were performed to observe the autophagy degree of SAH rats after acacetin. Tunel/NeuN staining, HE and Nissl' staining were performed for neuronal damage. RESULTS: Acacetin increased the neurological function score, reduce brain water content, Evans blue exudation and SAH scores. The microglia in cerebral cortex were activated after SAH, while acacetin could inhibit its activation, and decreased the expression of TNF-α and IL-6 proteins. The pathological staining showed the severe neuronal damage and increased neuronal apoptosis after SAH, while acacetin could improve these pathological changes. We also visualized the alleviated autophagy after acacetin. The expression of Beclin1 and ATF4 proteins were increased, but acacetin could inhibit them. Acacetin also inactivated PERK pathway, which could improve the neuronal injury and neuroinflammation after SAH, inhibit the microglia activation and the overactivated autophagy through PERK pathway. CONCLUSION: Acacetin may alleviate neuroinflammation and neuronal damage through PERK pathway, thus having the protective effect on EBI after SAH.


Asunto(s)
Autofagia , Flavonas , Microglía , Enfermedades Neuroinflamatorias , Transducción de Señal , Hemorragia Subaracnoidea , eIF-2 Quinasa , Animales , Masculino , Ratas , Autofagia/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Flavonas/farmacología , Flavonas/uso terapéutico , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo
8.
Heliyon ; 10(6): e27603, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496849

RESUMEN

Background: Jiuwan decoction has been used to treat chronic eczema since the Qing Dynasty. According to clinical experience, Shizhenqing granules (SZQG), derived from the Jiuwan decoction, exert beneficial clinical effects on acute eczema and reduce recurrence. Therefore, we elucidated the underlying mechanisms of SZQG through network pharmacology, molecular docking, and experimental validation. Methods: The main chemical components of SZQG were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). And the targets of SZQG against eczema were screened out through online databases. Then, the regulatory network map of the "herbal compound-potential target" and the target protein-protein interaction (PPI) network was constructed. The Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using by R language. Additionally, the interaction between the active compounds and the targets was verified by molecular docking technology. Finally, an experiment in vivo was used to verify the effect and mechanism of SZQG on eczema. Results: Using UHPLC-MS/MS, 158 main chemical compounds of SZQG were identified, and 72 compounds were selected according to the criteria for further analysis. All 237 potential targets of SZQG in eczema were explored using multiple online databases. The network with 14 core targets was screened out, including STAT3, RELA, TNF, JUN, MAPK3, IL-6, PIK3CA, STAT1, MAPK14, MAPK1, IL-4, NFKBIA, IL1B, and MYC. KEGG analyses indicated that the therapeutic effects of SZQG on eczema were predominantly associated with cytokine-cytokine receptor interaction, TNF, MAPK, NF-κB, toll-like receptor, T cell receptor, and Th1 and Th2 cell differentiation signaling pathways. Furthermore, the good affinity between the core compounds and core targets was verified by molecular docking technology, particularly for RELA and MAPK. Animal experiments revealed that SZQG downregulated MAPK14, RELA, T-bet, and GATA3 mRNA expression, reduced immunoglobulin E (IgE) and interleukin-4 (IL-4) serum concentrations, and improved eczema-like lesions in model rats. Conclusion: This study identified potential targets and signaling pathways of SZQG in the treatment of eczema, whereby RELA and MAPK14 may constitute the main therapeutic targets of SZQG in cytokine regulation and reduction of inflammatory responses.

9.
Cells ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759445

RESUMEN

The collagens are an enormous family of extracellular matrix proteins that play dominant roles in cell adhesion, migration and tissue remodeling under many physiological and pathological conditions. However, their function mechanisms in regulating innate immunity remain largely undiscovered. Here we use C. elegans epidermis as the model to address this question. The C. elegans epidermis is covered with a collagen-rich cuticle exoskeleton and can produce antimicrobial peptides (AMPs) against invading pathogens or physical injury. Through an RNAi screen against collagen-encoding genes, we found that except the previously reported six DPY collagens and the BLI-1 collagen, the majority of collagens tested appear unable to trigger epidermal immune defense when damaged. Further investigation suggests that the six DPY collagens form a specific substructure, which regulates the interaction between BLI-1 and the hemidesmosome receptor MUP-4. The separation of BLI-1 with MUP-4 caused by collagen damage leads to the detachment of the STAT transcription factor-like protein STA-2 from hemidesmosomes and the induction of AMPs. Our findings uncover the mechanism how collagens are organized into a damage sensor and how the epidermis senses collagen damage to mount an immune defense.

10.
Phytother Res ; 37(10): 4488-4503, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37314083

RESUMEN

Obesity is caused by an imbalance between energy intake and energy expenditure. This study aimed to determine the effects and mechanisms of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) on exercise tolerance in high-fat diet (HFD)-fed mice. Male C57BL/6J mice were randomly divided into two categories (7 groups [n = 8]): sedentary (control [CON], HFD, 200 mg/kg DMC, and 500 mg/kg DMC) and swimming (HFD, 200 mg/kg DMC, and 500 mg/kg DMC). Except the CON group, all other groups were fed HFD with or without DMC intervention for 33 days. The swimming groups were subjected to exhaustive swimming (three sessions/week). Changes in swimming time, glucolipid metabolism, body composition, biochemical indicators, histopathology, inflammation, metabolic mediators, and protein expression were assessed. DMC combined with regular exercise improved endurance performance, body composition, glucose and insulin tolerance, lipid profile, and the inflammatory state in a dose-dependent manner. Further, DMC alone or combined with exercise could restore normal tissue morphology, reduce fatigue-associated markers, and boost whole-body metabolism and the protein expression of phospho-AMP-activated protein kinase alpha/total-AMP-activated protein kinase alpha (AMPK), sirtuin-1 (SIRT1), peroxisome-proliferator-activated receptor gamma coactivator 1alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha in the muscle and adipose tissues of HFD-fed mice. DMC exhibits antifatigue effects by regulating glucolipid catabolism, inflammation, and energy homeostasis. Furthermore, DMC exerts a synergistic exercise-related metabolic effect via the AMPK-SIRT1-PGC-1α signaling pathway, suggesting that DMC is a potential natural sports supplement with mimicked or augmented exercise effects for obesity prevention.

11.
Carbohydr Polym ; 313: 120781, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182941

RESUMEN

Liver fibrosis has proven to be the main predisposing factor for liver cirrhosis and liver cancer; however, an effective treatment remains elusive. Polysaccharides, with low toxicity and a wide range of bioactivities, are strong potential candidates for anti-hepatic fibrosis applications. For this study, a new low molecular weight neutral polysaccharide (B. striata glucomannan (BSP)) was extracted and purified from Bletilla striata. The structure of BSP was characterized and its activities for alleviating liver fibrosis in vivo were further evaluated. The results revealed that the structural unit of BSP was likely →4)-ß-D-Glcp-(1 â†’ 4)-ß-D-Manp-(1 â†’ 4)-ß-D-2ace-Manp-(1 â†’ 4)-ß-D-Manp-(1 â†’ 4)-ß-D-Glcp-(1 â†’ 4)-ß-D-Manp-(1 â†’ 4)-ß-D-Manp-(1 â†’ 4)-ß-D-3ace-Manp-(1→, with a molecular weight of only 58.5 kDa. Additionally, BSP was observed to attenuate the passive impacts of liver fibrosis in a manner closely related to TLR2/TLR4-MyD88-NF-κB signaling pathway conduction. In summary, the results of this study provide theoretical foundations for the potential applications of BSP as an anti-liver fibrosis platform.


Asunto(s)
Orchidaceae , Polisacáridos , Humanos , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Orchidaceae/química , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Fibrosis
12.
Biotechnol Adv ; 66: 108154, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37062526

RESUMEN

Phosphorus, an indispensable nutrient, plays an essential role in cell composition, metabolism, and signal transduction. When inorganic phosphorus (Pi) is scarce, the Pi starvation response in E. coli is activated to increase phosphorus acquisition and drive the cells into a non-growing state to reduce phosphorus consumption. In the six decades of research history, the initiation, output, and shutdown processes of the Pi starvation response have been extensively studied. Simultaneously, Pi starvation has been used in biosensor development, recombinant protein production, and natural product biosynthesis. In this review, we focus on the output process and the applications of the Pi starvation response that have not been summarized before. Meanwhile, based on the current status of mechanistic studies and applications, we propose practical strategies to develop the natural Pi starvation response into a multifunctional and standardized regulatory system in four aspects, including response threshold, temporal expression, intensity range, and bifunctional regulation, which will contribute to its broader application in more fields such as industrial production, medical analysis, and environmental protection.


Asunto(s)
Escherichia coli , Fosfatos , Fosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fósforo/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Biotechnol Bioeng ; 120(2): 503-510, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36319206

RESUMEN

Orotate (OA) is a precursor of pyrimidine nucleotides and is widely used in food, pharmaceutical, and cosmetic industries. Although various microorganisms have been used for OA production, the production efficiency needs to be further improved for industrial application. In this study, we engineered Escherichia coli native metabolism for efficient OA production. The entire pathway was divided into the downstream OA synthesis, the midstream aspartate/glutamine supply, and the upstream glycolysis modules. First, the downstream module was optimized by disrupting pyrE to block OA consumption and release the feedback inhibition, and tuning expression of the biosynthetic genes. Second, the midstream pathway was enhanced by increasing the supply of the precursors and the cofactor nicotinamide adenine dinucleotide phosphate (NADPH). More importantly, we observed that pyrE disruption may lead to metabolic disorder as indicated by the accumulation of large amount of acetate. This problem was solved by reducing the flux of glycolysis. With these efforts, the final strain produced 80.3 g/L OA with a yield of 0.56 g/g glucose in fed-batch fermentation, which are the highest titer and yield reported so far. This work paves the way for industrial production of OA and represents as a good example of modulating cell metabolism for efficient chemical production.


Asunto(s)
Escherichia coli , Glucólisis , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Ingeniería Metabólica
14.
Nat Commun ; 13(1): 5492, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123371

RESUMEN

Dencichine is a plant-derived nature product that has found various pharmacological applications. Currently, its natural biosynthetic pathway is still elusive, posing challenge to its heterologous biosynthesis. In this work, we design artificial pathways through retro-biosynthesis approaches and achieve de novo production of dencichine. First, biosynthesis of the two direct precursors L-2, 3-diaminopropionate and oxalyl-CoA is achieved by screening and integrating microbial enzymes. Second, the solubility of dencichine synthase, which is the last and only plant-derived pathway enzyme, is significantly improved by introducing 28 synonymous rare codons into the codon-optimized gene to slow down its translation rate. Last, the metabolic network is systematically engineered to direct the carbon flux to dencichine production, and the final titer reaches 1.29 g L-1 with a yield of 0.28 g g-1 glycerol. This work lays the foundation for sustainable production of dencichine and represents an example of how synthetic biology can be harnessed to generate unnatural pathways to produce a desired molecule.


Asunto(s)
Escherichia coli , Hemostáticos , Aminoácidos Diaminos , Codón/metabolismo , Escherichia coli/metabolismo , Glicerol/metabolismo , Ingeniería Metabólica , Plantas/genética
15.
Nat Prod Res ; : 1-7, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102747

RESUMEN

An exopolysaccharide (EPS)-producing bacterium TD18, isolated from the culture broth of green alga Scenedesmus obliquus, was identified as Gordonia terrae based on the 100% identity of 16S rRNA sequences and designated Gordonia terrae TD18. The results of compositional and structural analyses and physiochemical tests show that (1) the exopolysaccharide produced by G. terrae TD18 (TD18-EPS) is an acidic hetero-polysaccharide with a molecular weight of 23 kDa, consisting of glucose, mannose, galactose and glucuronic acid, and (2) TD18-EPS is of high thermal stability with a degradation temperature of 308 °C, the solution of which is non-Newtonian pseudoplastic fluid exhibiting good emulsifying properties over a wide range of temperatures, pH and NaCl concentrations. Hence, Gordonia terrae TD18 is the first alga-symbiotic Gordonia strain identified thus far, while TD18-EPS is unique in terms of composition and structure, different from the known Gordonia EPS, with excellent physiochemical properties and thus has potential applications in industry.

16.
Clin Exp Pharmacol Physiol ; 49(11): 1221-1231, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054693

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Shikonin plays protective roles in age-associated diseases. Therefore, we investigate the biological functions of shikonin and its mechanisms involved in PD pathogenesis. The neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to mimic PD-like conditions in animal models. The learning and memory capacities were assessed by Morris water-maze test, pole test, locomotor activity test and rotarod test. Neuroinflammation was determined by measuring the levels of tumour necrosis factor α (TNF-α), interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The quantification of superoxide dismutase, malondialdehyde and glutathione in substantia nigra was performed to estimate oxidative damage. Histopathologic changes were examined by haematoxylin and eosin staining. Immunofluorescence staining was conducted to determine the activation of astrocytes, tyrosine hydroxylase (TH)-positive neurons, and nuclear translocation of p65. Immunohistochemistry was performed to evaluate dopamine transporter (DAT)-positive neurons. Protein levels were measured by western blotting. Shikonin alleviates the cognitive and behavioural impairments. The death of dopaminergic neurons in nigra was attenuated by shikonin. The MPTP-induced neuroinflammation and oxidative stress in substantia nigra were alleviated by shikonin administration. Shikonin ameliorated the neuronal damage in nigra and inhibited the activation of astrocyte. Shikonin modulated the protein kinase B (Akt)/extracellular regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/nuclear factor κB (NF-κB) pathways. Shikonin ameliorates dopaminergic neuronal apoptosis by inhibiting oxidative stress and neuroinflammation via the Akt/ERK/JNK/NF-κB pathways in PD. The study has several limitations. First, in a previous study, levels of phosphorylated ERK were increased by MPTP. In our current study, we observed decreased p-ERK in nigra following MPTP treatment. Therefore, further investigation in the mechanisms of shikonin against PD progression is required. Second, the biological functions of shikonin need more exploration, including mitochondrial function and autophagy. Moreover, specific molecular targets for shikonin remain uncertain.


Asunto(s)
FN-kappa B , Naftoquinonas , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Glutatión/metabolismo , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Malondialdehído , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Naftoquinonas/farmacología , Enfermedades Neuroinflamatorias , Neurotoxinas , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
17.
Metab Eng ; 73: 247-255, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35987433

RESUMEN

Ferulic acid (FA) is a natural methylated phenolic acid which represents various bioactivities. Bioproduction of FA suffers from insufficient methyl donor supplement and inefficient hydroxylation. To overcome these hurdles, we first activate the S-adenosylmethionine (SAM) cycle in E. coli by using endogenous genes to supply sufficient methyl donor. Then, a small protein Fre is introduced into the pathway to efficiently regenerate FADH2 for the hydroxylation. Remarkably, regeneration of these two cofactors dramatically promotes FA synthesis. Together with decreasing the byproducts formation and boosting precursor supply, the titer of FA reaches 5.09 g/L under fed-batch conditions, indicating a 20-fold improvement compared with the original producing E. coli strain. This work not only establishes a promising microbial platform for industrial level production of FA and its derivatives, but also highlights a convenient and effective strategy to enhance the biosynthesis of chemicals requiring methylation and FADH2-dependent hydroxylation.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Ácidos Cumáricos , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilación , Metilación , Regeneración
18.
Anal Chim Acta ; 1221: 340112, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35934354

RESUMEN

Oral squamous cell carcinoma (OSCC) is the well-known malignancy and poses a serious threat to human health with high morbidity and mortality. Early detection and treatment can improve the recovery rate and reduce complications of OSCC. Therefore, we designed a lateral flow strip biosensor platform (HRCA-strip) based on the cascade nucleic acid amplification technology (HRCA) for colorimetric analysis of OSCC-associated has-microRNA 31-5p (miRNA 31). In this work, the target miRNA 31 mediated the formation of the sandwich complex structure on the surface of magnetic beads (MBs). Then, the sandwich complex structure could activate cascade amplification reaction between hybridization chain reaction (HCR) and rolling-circle amplification (RCA) to generate numerous G-quadruplex structures. The G-quadruplex structures combined with hemin to form hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (H/G-HRP mimic enzyme) which were enriched on the T-line and catalyzed the oxidation of chromogenic substrates to generate colorimetric signal on the strip. The HRCA-strip platform could achieve highly sensitive and specific miRNA 31 detection with the limit of detection (LOD) as low as 3.21 fM. Moreover, the designed HRCA-strip platform also enabled portable detection of miRNA 31 in clinical sample which might show good potential for early clinical diagnosis of OSCC.


Asunto(s)
Técnicas Biosensibles , Carcinoma de Células Escamosas , ADN Catalítico , G-Cuádruplex , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , ADN Catalítico/química , Hemina/química , Peroxidasa de Rábano Silvestre/química , Humanos , Límite de Detección , MicroARNs/análisis , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Técnicas de Amplificación de Ácido Nucleico , Carcinoma de Células Escamosas de Cabeza y Cuello
19.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36012649

RESUMEN

Jasmonic acid (JA) is a vital plant hormone that performs a variety of critical functions for plants. Salvia miltiorrhiza Bunge (S. miltiorrhiza), also known as Danshen, is a renowned traditional Chinese medicinal herb. However, no thorough and systematic analysis of JA biosynthesis genes in S. miltiorrhiza exists. Through genome-wide prediction and molecular cloning, 23 candidate genes related to JA biosynthesis were identified in S. miltiorrhiza. These genes belong to four families that encode lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC), and 12-OPDA reductase3 (OPR3). It was discovered that the candidate genes for JA synthesis of S. miltiorrhiza were distinct and conserved, in contrast to related genes in other plants, by evaluating their genetic structures, protein characteristics, and phylogenetic trees. These genes displayed tissue-specific expression patterns concerning to methyl jasmonate (MeJA) and wound tests. Overall, the results of this study provide valuable information for elucidating the JA biosynthesis pathway in S. miltiorrhiza by comprehensive and methodical examination.


Asunto(s)
Ciclopentanos , Oxilipinas , Salvia miltiorrhiza , Clonación Molecular , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo
20.
J Chem Neuroanat ; 124: 102138, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35863561

RESUMEN

OBJECTIVE: To explore the protective effect of Ghrelin on EBI caused by SAH through the HMGB1/NF-κB pathway mediated by Tim-3. METHODS: Rats were divided into four groups (n = 6): Sham group (Sham), SAH+vehicle group (SAH), SAH + 0.02 µg/kg rhGhrelin group (rhGhrelin-L), SAH + 0.04 µg/kg rhGhrelin group (rhGhrelin-H). At 48 h after SAH, the behavioral impairment in rats was examined for using neurobehavioral scores. The pathological change in the temporal basal brain tissue was observed by HE, and the expression of GHSR-1α and Tim-3 in the temporal basal brain tissue was observed by Western blot. To further validate that rhGhrelin could inhibit SAH-induced EBI by the Tim-3-mediated HMGB1/NF-κB pathway, we treated rats with the AAV-Tim-3. The contents of the inflammatory factors IL-1ß, TNF-α, IL-6 was determined by ELISA, apoptosis was detected by TUNEL, the neurons were visualized by Nissl staining, the expression of GHSR-1α,Tim-3, HMGB1, RAGE, NF-κB p65 was determined by Western blot. RESULTS: Compared with the SAH group, rats treated with rhGhrelin had a significantly lower neurobehavioral score, significantly decreased inflammatory factors IL-1ß, TNF-α, IL-6 expression, significantly decreased apoptosis index, and significantly decreased Tim-3, HMGB1, RAGE, NF-κB p65 expression(p < 0.01). The protective effect of rhGhrelin on the SAH-induced EBI was reversed by the AAV-Tim-3. CONCLUSION: Ghrelin has beneficial effects against SAH-induced EBI by inhibiting the HMGB1/NF-κB pathway, which may be regulated by Tim-3.


Asunto(s)
Lesiones Encefálicas , Proteína HMGB1 , Hemorragia Subaracnoidea , Animales , Lesiones Encefálicas/patología , Ghrelina/farmacología , Ghrelina/uso terapéutico , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Receptor 2 Celular del Virus de la Hepatitis A , Interleucina-6 , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...