RESUMEN
The study of immune regulation mechanisms induced by parasites may help develop new treatment methods for inflammatory diseases including type 1 diabetes, which is related to type 1 immune responses. The negative correlation between schistosomiasis infection and type 1 diabetes has been confirmed, and the mechanism of Schistosoma-mediated prevention of type 1 diabetes may be related to the adaptive and innate immune systems. Schistosoma-related molecules affect immune cell composition and macrophage polarization and stimulate an increase in natural killer T cells. Furthermore, Schistosoma-related molecules can regulate the adaptive immune responses related to the prevention of type 1 diabetes and change the Th1/Th2 and Th17/Treg axis. Our previous review showed the role of regulatory T cells in the protective of type 1 diabetes mediated by Schistosoma. Here, we aim to review the other mechanisms of schistosomiasis infection and Schistosoma-related products in regulating the immune response associated with the treatment of type 1 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 1 , Esquistosomiasis , Animales , Diabetes Mellitus Tipo 1/prevención & control , Schistosoma , Linfocitos T Reguladores , Antígenos Helmínticos , CitocinasRESUMEN
This study was conducted to evaluate the effect of glyceraldehyde-3-phosphate dehydrogenase from Schistosoma japonicum (SjGAPDH) on the growth of schistosomula. Quantitative reverse transcription PCR and immunohistochemical analysis were performed to analyze the mRNA levels and immune localization of SjGAPDH. RNA interference experiments were conducted to further examine the role of SjGAPDH in the schistosomula growth of S. japonicum. The results demonstrated that SjGAPDH mRNA was expressed during all stages of S. japonicum development, with its expression gradually increasing over time. SjGAPDH was mainly distributed on the surface and in some parenchymal cells of S. japonicum. Double-stranded RNA-mediated GAPDH knockdown reduced SjGAPDH expression by approximately 59%. Light microscopic observations revealed that the size, length, width, volume, and area of schistosomula in the SjGAPDH interference group were significantly lower than those in the enhanced green fluorescent protein control group. These findings indicate that SjGAPDH may affect the growth of S. japonicum schistosomula and could be a useful target for treating schistosomiasis.
Asunto(s)
Schistosoma japonicum , Animales , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Interferencia de ARN , ARN Mensajero , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
This study aimed to investigate the role and underlying mechanism of miR-135b in high glucose-induced oxidative stress of renal tubular epithelial cells. Here, in vivo experiments found that compared to the control group, miR-135b expression was significantly up-regulated in the diabetes group, whereas BMP7 mRNA and protein levels were down-regulated. In high glucose-treated renal tubular epithelial cells (HK-2) in vitro, oxidative stress was induced, which up-regulated miR-135b expression. In addition, the regulation of miR-135b on BMP7 expression was confirmed in HK-2 cells. Under high glucose conditions, oxidative stress promoted the apoptosis of HK-2 cells through the up-regulation of miR-135b expression. In vivo experiments indicated that interference with miR-135b improved renal function in mice with diabetic nephropathy. In conclusion, these results indicated that the up-regulation of miR-135b expression induced by oxidative stress promotes the apoptosis of HK-2 cells under high glucose conditions.
Asunto(s)
Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Glucosa/farmacología , MicroARNs/genética , Estrés Oxidativo/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Túbulos Renales/metabolismo , Transducción de SeñalRESUMEN
This publisher's note contains corrections to Opt. Lett.40, 5224 (2015).OPLEDP0146-959210.1364/OL.40.005224.
RESUMEN
BACKGROUND: It has been demonstrated that thioredoxin-interacting protein (TXNIP) interacted with NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and participated in the NLRP3 inflammasome activation. Our previous study has demonstrated that in human peritoneal mesothelial cells (HPMCs), exposure to high glucose-based peritoneal dialysis (PD) solutions induced mitochondrial reactive oxygen species (ROS) production, activation of NLRP3 inflammasome and IL-1ß expression. This study aimed to investigate the effect of high glucose-based PD fluids on the TXNIP expression and the underlying mechanisms by which TXNIP-NLRP3 interaction mediates the inflammatory injury to HPMCs in high glucose-based PD fluids conditions. METHODS: TXNIP gene and protein expression was detected by real-time polymerase chain reaction (RT-PCR) and immunoblot. Immunoprecipitation was used to evaluate the interaction between TRX1 and TXNIP, TXNIP and NLRP3. ROS production and IL-1ß expression was examined by flow cytometry and immunoblot and enzyme-linked immunosorbent assay (ELISA) respectively. RESULTS: It was identified that high glucose-based PD solutions enhance the level of TXNIP gene and protein in cultured HPMCs and a rat-based PD model. We also found that ROS generation induced by high glucose-based PD solutions disrupts the TRX1-TXNIP association, while promoting the binding of TXNIP to NLRP3 in HPMCs. Furthermore, the application of a ROS inhibitor (APDC) to HPMCs blocked the high glucose-based PD solution-induced TXNIP-NLRP3 binding, in addition to ROS production and IL-1ß expression. CONCLUSION: The results of the present study revealed a novel mechanism underlying high glucose-containing PD-mediated peritoneal inflammatory injury, supporting the attenuation of ROS generation as a potential therapeutic strategy to alleviate such pathology.
Asunto(s)
Proteínas Portadoras/metabolismo , Epitelio/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/metabolismo , Fallo Renal Crónico/terapia , Diálisis Peritoneal , Peritoneo/patología , Animales , Proteínas Portadoras/genética , Línea Celular , Modelos Animales de Enfermedad , Epitelio/metabolismo , Epitelio/patología , Glucosa , Humanos , Interleucina-1beta/metabolismo , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Regulación hacia ArribaRESUMEN
LIBS mapping was used to analyze and detect the elemental distribution of iron ore surface with self-developed software and 532 nm Ndâ¶YAG laser. Firstly, in order to illustrate the relationship between element content and spectral intensity, the calibration curve was established by scanning the surface of standard sample. Then, a self-made sample was homogeneously divided into three parts that was pressed by three different standard iron ore powders. For the purpose of validating the mapping technology, a two-dimensional concentration distribution profile was generated after scanning the sample surface which was compared with surface morphology phase of the sample. Finally, with the resolution of 100 microns, the surface scanning analysis of the natural iron ore within the scope of 14 mm×11 mm was implemented. With this basis, the distribution profile of the elements Ca, Al, Ti and Mn were obtained, and the analysis results were compared with the surface morphology phase of the natural iron ore. The results showed that LIBS mapping technology could be used to achieve the qualitative analysis of component gradient distribution of the heterogeneous sample surface.
RESUMEN
The self-absorption effect is one of the main bottlenecks for the laser-induced breakdown spectroscopy (LIBS) technique. In this Letter, LIBS assisted by laser-stimulated absorption (LSA-LIBS) is proposed to solve this problem. The process of LSA in self-absorption reduction is discussed and confirmed. The serious self-absorption phenomena of spectral lines (K, Mn, and Al) were not observed in LSA-LIBS. The full width at half-maximum (FWHM) of K, Mn, and Al was reduced by about 58%, 25%, and 52%, respectively. The results demonstrate the capability of this approach to self-absorption reduction in the LIBS technique.
RESUMEN
Laser-induced breakdown spectroscopy (LIBS), a new kind of atomic spectrum analysis technology, has attracted much atterition of the researchers due to its characteristics of real-time, simultaneous multi-element analysis, and no sample preparation. However, the poor analytical sensitivity has been an important factor that restricts the development of this technology. LIBS based on resonance excitation combines atomic fluorescence spectroscopy and laser-induced breakdown spectroscopy and selectively excites the target elements. In this way, the analytical sensitivity of LIBS can be improved substantially and its application for trace elements detection is greatly expanded. In this paper, the research development of LIBS based on resonance excitation is summarized. The generation of atomic, fluorescence spectrum in laser-induced plasma, the typical classification and the basic principle of LIBS based on resonance. excitation are introduced. The influence of ablation laser energy, resonant laser energy and wavelength, delay between the ablation laser and the resonant laser, and the gate width on spectral enhancement are analyzed in detail. The application status and deficiencies of LIBS based on resonance excitation in the fields of metallurgy, environmental monitoring and isotope detection are elaborated. Future prospects of LIBS based on resonance excitation are also described.
RESUMEN
The concentrations of vanadium and titanium elements in the steel samples were quantitatively analyzed by Laser-induced breakdown spectroscopy technique in the present paper. The lines of V (VI: 440.85 nm) and Ti (Ti I: 334.19 nm) were chosen as the quantitative analysis spectral lines, while spectral line of Fe (Fe I: 438.35 nm) was chosen as the internal calibration line due to it being the matrix element. Then the calibration curves of V and Ti elements were established with basic calibration method and internal calibration method respectively to quantitatively analyze the concentrations of vanadium and titanium elements in steel. The experimental results showed that the fitting correlation coefficient (R2) of vanadium and titanium elements are 0.9875 and 0.9909 when using basic calibration method, and their maximum relative errors of measurement are 11.09% and 4% respectively; while the fitting correlation coefficient (R2) of vanadium and titanium elements reachs 0.9952 and 0.9921 respectively when using internal calibration method, at the same time, the relative errors of measurement for vanadium and titanium elements were decreased to be lower than 4%. The results of this study demonstrated that the concentration measurement of vanadium and titanium elements in the steel was more suitable with internal calibration method in laser-induced breakdown spectroscopy.