Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Commun Biol ; 7(1): 928, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090206

RESUMEN

Wheat grain starch content displays large variations within different pearling fractions, which affecting the processing quality of corresponding flour, while the underlying mechanism on starch gradient formation is unclear. Here, we show that wheat caryopses acquire sugar through the transfer of cells (TCs), inner endosperm (IE), outer endosperm (OE), and finally aleurone (AL) via micro positron emission tomography-computed tomography (PET-CT). To obtain integrated information on spatial transcript distributions, developing caryopses are laser microdissected into AL, OE, IE, and TC. Most genes encoding carbohydrate transporters are upregulated or specifically expressed, and sugar metabolites are more highly enriched in the TC group than in the AL group, in line with the PET-CT results. Genes encoding enzymes in sucrose metabolism, such as sucrose synthase, beta-fructofuranosidase, glucose-1-phosphate adenylyltransferase show significantly lower expression in AL than in OE and IE, indicating that substrate supply is crucial for the formation of starch gradients. Furthermore, the low expressions of gene encoding starch synthase contribute to low starch content in AL. Our results imply that transcriptional regulation represents an important means of impacting starch distribution in wheat grains and suggests breeding targets for enhancing specially pearled wheat with higher quality.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Almidón , Triticum , Triticum/metabolismo , Triticum/genética , Almidón/metabolismo , Endospermo/metabolismo , Transporte Biológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarosa/metabolismo , Azúcares/metabolismo
2.
Med ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39121854

RESUMEN

BACKGROUND: We investigated the safety and efficacy of preoperative camrelizumab combined with chemotherapy for treating thoracic borderline resectable esophageal squamous cell carcinoma (Br-ESCC) (ChiCTR2200056728). METHODS: Patients with thoracic Br-ESCC received intravenous camrelizumab plus chemotherapy and underwent esophagectomy. The primary endpoint was the pathologic complete response (pCR) rate. We introduced computed tomography and endoscopic examination into the diagnostic criteria to increase its reproducibility. Additionally, we defined a new resection status, Rbr+/-, for Br-ESCC. FINDINGS: Thirty-one patients with Br-ESCC were ultimately enrolled in this study. Overall, 71.0% (22/31) of the patients underwent esophagectomy. R0 resection was achieved in 81.8% of patients (18/22). pCR and major pathological response were observed in 40.9% (9/22) and 63.6% (14/22) of the resected patients, respectively. Eighteen R0 resection patients were redefined according to our Rbr definition; 61.1% (11/18) were classified as Rbr+ resection, and 38.9% (7/18) were classified as Rbr- resection. With a median postoperative follow-up of 17.9 months, 4 patients out of 11 who underwent Rbr+ resection experienced local recurrence (2 of whom achieved pCR). However, no patients (0/7) who underwent Rbr- resection experienced local recurrence. CONCLUSIONS: Esophagectomy after neoadjuvant immunochemotherapy is a promising radical treatment for Br-ESCC. R0 resection was achieved in 81.8% of patients, and a pCR was observed in 40.9% of resected patients. Even after complete excision, Rbr+ resection leads to a higher rate of local recurrence in patients with Br-ESCC. FUNDING: This study was supported by the Key Scientific Research Projects of the Institutions of Higher Learning in Henan Province (no. 21A320032).

3.
Plant Cell Physiol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096526

RESUMEN

Low temperature significantly inhibits the plant growth in wheat (Triticum aestivum L.), prompting the exploration of effective strategies to mitigate low temperature stress. Several priming methods enhance low temperature stress tolerant, however, the role of ozone priming remains unclear in wheat. Here we found ozone priming alleviated low temperature stress in wheat. Transcriptome analysis showed that ozone priming positively modulated 'photosynthesis-antenna proteins' pathway in wheat under low temperature. Which was confirmed by the results of the ozone-primed plants had higher trapped energy flux and electron transport flux per reaction, and less damage to chloroplasts than non-primed plants under low temperature. Ozone priming also mitigated the overstimulation of glutathione metabolism and induced the accumulation of total ascorbic acid and glutathione, maintained redox homeostasis in wheat under low temperature. Moreover, gene expressions and enzyme activities in glycolysis pathways were upregulated in ozone priming comparing with non-priming after the low temperature stress. Furthermore, exogenous antibiotics significantly increased low temperature tolerance, which further proved that the inhibition of ribosome biogenesis by ozone priming was involved in low temperature tolerance in wheat. In conclusion, ozone priming enhanced wheat low temperature tolerance through promoting light-harvesting capacity, redox homeostasis, and carbohydrate metabolism, as well as inhibiting ribosome biogenesis.

4.
Amino Acids ; 56(1): 45, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007996

RESUMEN

Certain long non-coding RNAs (lncRNAs) have potential peptide-coding abilities. Here, the role and molecular basis of the RNF217-AS1-encoded peptide in stomach cancer (SC) tumorigenesis were explored. Here, lncRNAs associated with SC pathogenesis and macrophage infiltration and lncRNAs with peptide-coding potential were searched by bioinformatics analysis. The gene mRNA and protein levels were examined by RT-qPCR and western blot assays, respectively. Cell viability, migratory, and invasive abilities were measured by CCK-8, Transwell migration, and Transwell invasion assays, respectively. The potential biological processes related to lncRNA RNF217-AS1 were identified by single-gene GSEA analysis. The effect of RNF217-AS1-encoded peptide on SC tumorigenesis was examined by mouse xenograft experiments. The results showed that lncRNA NR2F1-AS1 and RNF217-AS1 were differentially expressed and associated with macrophage infiltration in SC, and they had the ability to translate into short peptides. The RNF217-AS1 ORF-encoded peptide could reduce SC cell viability, inhibit cell migration and invasion, as well as hinder the development of SC xenograft tumors. The RNF217-AS1 ORF-encoded peptide in human SC AGS cells suppressed THP-1 cell migration, triggered the differential expression of CXCL1/CXCL2/CXCL8/CXCL12, and inactivated the TLR4/NF-κB/STAT1 signaling pathways. As a conclusion, the RNF217-AS1 ORF-encoded peptide hindered SC progression in vitro and in vivo and suppressed macrophage recruitment and pro-inflammatory responses in SC.


Asunto(s)
Carcinogénesis , Movimiento Celular , Macrófagos , ARN Largo no Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Animales , Ratones , Macrófagos/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Péptidos/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Inflamación/metabolismo , Inflamación/genética , Proliferación Celular
5.
Sci Total Environ ; 949: 175092, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39079645

RESUMEN

Plant litter is an important source of soil organic carbon (SOC) in terrestrial ecosystems, and the pattern of litter inputs is also influenced by global change and human activities. However, the current understanding of the impact of changes in litter inputs on SOC dynamics remains contentious, and the mechanisms by which changes in litter inputs affect SOC have rarely been investigated from the perspective of microbial carbon use efficiency (CUE). We conducted a 1-year experiment with litter treatments (no aboveground litter (NL), natural aboveground litter (CK), and double aboveground litter (DL)) in Robinia pseudoacacia plantation forest on the Loess Plateau. The objective was to assess how changes in litter input affect SOC accumulation in forest soils from the perspective of microbial CUE. Results showed that NL increased soil microbial C limitation by 77.11 % (0-10 cm) compared to CK, while it had a negligible effect on nitrogen and phosphorus limitation. In contrast, DL had no significant effect on soil microbial nutrient limitation. Furthermore, NL was found to significantly increase microbial CUE and decrease microbial metabolic quotient (QCO2), while the opposite was observed with DL. It is noteworthy that NL significantly contributed to an increase in SOC of 30.72 %, while DL had no significant effect on SOC. Correlation analysis showed that CUE was directly proportional to SOC and inversely proportional to QCO2. The partial least squares pathway model indicated that NL indirectly regulated the accumulation of SOC, mainly through two pathways: promoting microbial CUE increase and reducing QCO2. Overall, this study elucidates the mechanism and novel insights regarding SOC accumulation under changes in litter input from the perspective of microbial CUE. These findings are critical for further comprehension of soil carbon dynamics and the terrestrial C-cycle.

6.
Respiration ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038439

RESUMEN

INTRODUCTION: To establish an ultrasonographic radiomics machine learning model based on endobronchial ultrasound (EBUS) to assist in diagnosing benign and malignant mediastinal and hilar lymph nodes (LNs). METHODS: The clinical and ultrasonographic image data of 197 patients were retrospectively analyzed. The radiomics features extracted by EBUS-based radiomics were analyzed by the least absolute shrinkage and selection operator (LASSO). Then, we used a support vector machine (SVM) algorithm to establish an EBUS-based radiomics model. A total of 205 lesions were randomly divided into training (n=143) and validation (n=62) groups. The diagnostic efficiency was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS: A total of 13 stable radiomics features with non-zero coefficients were selected. The SVM model exhibited promising performance in both groups. In the training group, the SVM model achieved a ROC area under the curve (AUC) of 0.892 (95% CI: 0.885-0.899), with an accuracy of 85.3%, sensitivity of 93.2%, and specificity of 79.8%. In the validation group, the SVM model had an ROC AUC of 0.906 (95% CI: 0.890-0.923), an accuracy of 74.2%, a sensitivity of 70.3%, and a specificity of 74.1%. CONCLUSION: The EBUS-based radiomics model can be used to differentiate mediastinal and hilar benign and malignant LNs. The SVM model demonstrated excellent potential as a diagnostic tool in clinical practice.

8.
Langmuir ; 40(21): 11116-11124, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38738776

RESUMEN

Layered transition metal oxides are commonly used as the cathode materials in sodium-ion batteries due to their low cost and easy manufacturing. However, the application is hindered by poor rate performance and complex phase transitions. To address these challenges, a new seven-component high-entropy layered oxide cathode material, O3-NaNi0.25Fe0.15Mn0.3Ti0.1Sn0.05Co0.05Li0.1O2 (HEO) has been developed. The entropy stabilization effect plays a crucial role in improving the performance of electrochemical systems and the stability of structures. The HEO exhibits a specific discharge capacity of 154.1 mA h g-1 at 0.1 C and 94.5 mA h g-1 at 7 C. In-situ and ex-situ XRD results demonstrate that the HEO effectively retards complex phase transitions. This work provides a high-entropy design for the storage materials with a high energy density. Meanwhile, it eliminates industry doubts about the performance of sodium ion layered oxide cathode materials.

9.
JAMA Netw Open ; 7(5): e2413213, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805227

RESUMEN

Importance: The ratio of red blood cell distribution width (RDW) to albumin concentration (RAR) has emerged as a reliable prognostic marker for mortality in patients with various diseases. However, whether RAR is associated with mortality in the general population remains unknown. Objectives: To explore whether RAR is associated with all-cause and cause-specific mortality and to elucidate their dose-response association. Design, Setting, and Participants: This population-based prospective cohort study used data from participants in the 1998-2018 US National Health and Nutrition Examination Survey (NHANES) and from the UK Biobank with baseline information provided from 2006 to 2010. Included participants had complete data on serum albumin concentration, RDW, and cause of death. The NHANES data were linked to the National Death Index records through December 31, 2019. For the UK Biobank, dates and causes of death were obtained from the National Health Service Information Centre (England and Wales) and the National Health Service Central Register Scotland (Scotland) to November 30, 2022. Main Outcomes and Measures: Potential associations between RAR and the risk of all-cause and cause-specific mortality were evaluated using Cox proportional hazards regression models. Restricted cubic spline regressions were applied to estimate possible nonlinear associations. Results: In NHANES, 50 622 participants 18 years of age or older years were included (mean [SD] age, 48.6 [18.7] years; 26 136 [51.6%] female), and their mean (SD) RAR was 3.15 (0.51). In the UK Biobank, 418 950 participants 37 years of age or older (mean [SD], 56.6 [8.1] years; 225 038 [53.7%] female) were included, and their mean RAR (SD) was 2.99 (0.31). The NHANES documented 7590 deaths over a median (IQR) follow-up of 9.4 (5.1-14.2) years, and the UK Biobank documented 36 793 deaths over a median (IQR) follow-up of 13.8 (13.0-14.5) years. According to the multivariate analysis, elevated RAR was significantly associated with greater risk of all-cause mortality (NHANES: hazard ratio [HR], 1.83 [95% CI, 1.76-1.90]; UK Biobank: HR, 2.08 [95% CI, 2.03-2.13]), as well as mortality due to malignant neoplasm (NHANES: HR, 1.89 [95% CI, 1.73-2.07]; UK Biobank: HR, 1.93 [95% CI, 1.86-2.00]), heart disease (NHANES: HR, 1.88 [95% CI, 1.74-2.03]; UK Biobank: HR, 2.42 [95% CI, 2.29-2.57]), cerebrovascular disease (NHANES: HR, 1.35 [95% CI, 1.07-1.69]; UK Biobank: HR, 2.15 [95% CI, 1.91-2.42]), respiratory disease (NHANES: HR, 1.99 [95% CI, 1.68-2.35]; UK Biobank: HR, 2.96 [95% CI, 2.78-3.15]), diabetes (NHANES: HR, 1.55 [95% CI, 1.27-1.90]; UK Biobank: HR, 2.83 [95% CI, 2.35-3.40]), and other causes of mortality (NHANES: HR, 1.97 [95% CI, 1.86-2.08]; UK Biobank: HR, 2.40 [95% CI, 2.30-2.50]) in both cohorts. Additionally, a nonlinear association was observed between RAR levels and all-cause mortality in both cohorts. Conclusions and Relevance: In this cohort study, a higher baseline RAR was associated with an increased risk of all-cause and cause-specific mortality in the general population. These findings suggest that RAR may be a simple, reliable, and inexpensive indicator for identifying individuals at high risk of mortality in clinical practice.


Asunto(s)
Índices de Eritrocitos , Encuestas Nutricionales , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto , Anciano , Causas de Muerte , Estados Unidos/epidemiología , Albúmina Sérica/análisis , Modelos de Riesgos Proporcionales , Mortalidad , Factores de Riesgo , Biomarcadores/sangre , Reino Unido/epidemiología
10.
J Cardiothorac Surg ; 19(1): 278, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711077

RESUMEN

OBJECTIVE: To evaluate the efficacy and safety of intrapleural perfusion with hyperthermic chemotherapy (IPHC) in treating malignant pleural effusion (MPE). METHODS: PubMed, Embase, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), VIP Chinese Science and Technology Journal Full-text Database (VP-CSJFD), and Wanfang database were searched by computer from database establishment to January 17, 2024. Relevant randomized controlled articles with IPHC as the observational group and intrapleural perfusion chemotherapy (IPC) as the control group for MPE were included. Then, the methodological quality of the included articles was evaluated and statistically analyzed using Stata 16.0. RESULTS: Sixteen trials with 647 patients receiving IPHC and 661 patients receiving IPC were included. The meta-analysis found that MPE patients in the IPHC group had a more significant objective response rate [RR = 1.31, 95%CI (1.23, 1.38), P < 0.05] and life quality improvement rate [RR = 2.88, 95%CI (1.95, 4.24), P < 0.05] than those in the IPC group. IPHC and IPC for MPE patients had similar incidence rates of asthenia, thrombocytopenia, hepatic impairment, and leukopenia. CONCLUSION: Compared with IPC, IPHC has a higher objective response rate without significantly increasing adverse reactions. Therefore, IPHC is effective and safe. However, this study is limited by the quality of the literature. Therefore, more high-quality, multi-center, large-sample, rigorously designed randomized controlled clinical studies are still needed for verification and evaluation.


Asunto(s)
Hipertermia Inducida , Derrame Pleural Maligno , Humanos , Derrame Pleural Maligno/terapia , Hipertermia Inducida/métodos , Resultado del Tratamiento , Quimioterapia del Cáncer por Perfusión Regional/métodos , Quimioterapia del Cáncer por Perfusión Regional/efectos adversos , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos
11.
BMC Nephrol ; 25(1): 157, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714960

RESUMEN

BACKGROUND: This study aims to investigate the influencing factors of vascular calcification in peritoneal dialysis (PD) patients and its relationship with long-term prognosis. METHODS: This retrospective cohort study included chronic kidney disease patients undergoing peritoneal dialysis at the Peritoneal Dialysis Center of Beijing Luhu Hospital, Capital Medical University, from January 2019 to March 2019. Demographic and clinical laboratory data, including serum sclerostin (SOST), calcium (Ca), phosphate (P), serum albumin (ALB), and intact parathyroid hormone (iPTH) levels, were collected. Abdominal aortic calcification (AAC) was assessed using abdominal lateral X-ray examination to determine the occurrence of vascular calcification, and patients were divided into the AAC group and Non-AAC group based on the results. RESULTS: A total of 91 patients were included in the study. The AAC group consisted of 46 patients, while the Non-AAC group consisted of 45 patients. The AAC group had significantly older patients compared to the non-AAC group (P < 0.001) and longer dialysis time (P = 0.004). Multivariable logistic regression analysis indicated that risk factors for vascular calcification in PD patients included dialysis time, diabetes, hypertension, and SOST. Kaplan-Meier survival analysis showed that the AAC group had a significantly higher mortality rate than the non-AAC group (χ2 = 35.993, P < 0.001). Multivariable Cox regression analysis revealed that dialysis time, diabetes and AAC were risk factors for all-cause mortality in peritoneal dialysis patients. CONCLUSION: Longer dialysis time, comorbid diabetes, comorbid hypertension, and SOST are risk factors for vascular calcification in PD patients. Additionally, AAC, longer dialysis time, and comorbid diabetes are associated with increased risk of all-cause mortality in peritoneal dialysis patients.


Asunto(s)
Diálisis Peritoneal , Insuficiencia Renal Crónica , Calcificación Vascular , Calcificación Vascular/diagnóstico , Calcificación Vascular/etiología , Diálisis Peritoneal/efectos adversos , Pronóstico , Estudios Retrospectivos , Insuficiencia Renal Crónica/terapia , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano
12.
Front Oncol ; 14: 1347282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595815

RESUMEN

Given their good antitumor effects, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are standard first-line therapy for EGFR-sensitive mutations, including exon 19 deletions and exon 21 L858R mutations. EGFR fusion mutations and EGFR amplification are very rare in non-small cell lung cancer (NSCLC). We describe 2 patients with NSCLC harboring EGFR fusion mutations (EGFR-MACF1 and EGFR-GNAT3) combined with EGFR amplification. Both patients received EGFR-TKI treatment, and 1 of them showed an antitumor response.

13.
Micromachines (Basel) ; 15(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38675363

RESUMEN

Physically unclonable functions (PUFs) are crucial for enhancing cybersecurity by providing unique, intrinsic identifiers for electronic devices, thus ensuring their authenticity and preventing unauthorized cloning. The SRAM-PUF, characterized by its simple structure and ease of implementation in various scenarios, has gained widespread usage. The soft-decision Reed-Muller (RM) code, an error correction code, is commonly employed in these designs. This paper introduces the design of an RM code soft-decision attack algorithm to reveal its potential security risks. To address this problem, we propose a soft-decision SRAM-PUF structure based on the elliptic curve digital signature algorithm (ECDSA). To improve the processing speed of the proposed secure SRAM-PUF, we propose a custom ECDSA scheme. Further, we also propose a universal architecture for the critical operations in ECDSA, elliptic curve scalar multiplication (ECSM), and elliptic curve double scalar multiplication (ECDSM) based on the differential addition chain (DAC). For ECSMs, iterations can be performed directly; for ECDSMs, a two-dimensional DAC is constructed through precomputation, followed by iterations. Moreover, due to the high similarity of ECSM and ECDSM data paths, this universal architecture saves hardware resources. Our design is implemented on a field-programmable gate array (FPGA) and an application-specific integrated circuit (ASIC) using a Xilinx Virtex-7 and an TSMC 40 nm process. Compared to existing research, our design exhibits a lower bit error rate (2.7×10-10) and better area-time performance (3902 slices, 6.615 µs ECDSM latency).

14.
Sci Total Environ ; 929: 172626, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657823

RESUMEN

Despite the wide acknowledgment that plastic pollution and global warming have become serious agricultural concerns, their combined impact on crop growth remains poorly understood. Given the unabated megatrend, a simulated soil warming (SWT, +4 °C) microcosm experiment was carried out to provide a better understanding of the effects of temperature fluctuations on wheat seedlings exposed to nanoplastics (NPs, 1 g L-1 61.71 ± 0.31 nm polystyrene). It was documented that SWT induced oxidative stress in wheat seedlings grown in NPs-contaminated soil, with an 85.56 % increase in root activity, while decreasing plant height, fresh weight, and leaf area by 8.72 %, 47.68 %, and 15.04 % respectively. The SWT also resulted in reduced photosynthetic electron-transfer reaction and Calvin-Benson cycle in NPs-treated plants. Under NPs, SWT stimulated the tricarboxylic acid (TCA) metabolism and bio-oxidation process. The decrease in photosynthesis and the increase in respiration resulted in an 11.94 % decrease in net photosynthetic rate (Pn). These results indicated the complicated interplay between climate change and nanoplastic pollution in crop growth and underscored the potential risk of nanoplastic pollution on crop production in the future climate.


Asunto(s)
Fotosíntesis , Contaminantes del Suelo , Suelo , Temperatura , Triticum , Triticum/fisiología , Triticum/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/toxicidad , Fotosíntesis/efectos de los fármacos , Calentamiento Global , Cambio Climático , Plantones/efectos de los fármacos , Plantones/fisiología , Plásticos/toxicidad
15.
Langmuir ; 40(18): 9556-9562, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38666374

RESUMEN

Direct regeneration has gained much attention in LiFePO4 battery recycling due to its simplicity, ecofriendliness, and cost savings. However, the excess carbon residues from binder decomposition, conductive carbon, and coated carbon in spent LiFePO4 impair electrochemical performance of direct regenerated LiFePO4. Herein, we report a preoxidation and prilling collaborative doping strategy to restore spent LiFePO4 by direct regeneration. The excess carbon is effectively removed by preoxidation. At the same time, prilling not only reduces the size of the primary particles and shortens the diffusion distance of Li+ but also improves the tap density of the regenerated materials. Besides, the Li+ transmission of the regenerated LiFePO4 is further improved by Ti4+ doping. Compared with commercial LiFePO4, it has excellent low-temperature performance. The collaborative strategy provides a new insight into regenerating high-performance spent LiFePO4.

18.
Bioorg Chem ; 147: 107384, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643568

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a malignant tumor that is highly susceptible to metastasis, recurrence and resistance, and few therapeutic targets have been identified and proven effective. Herein, we demonstrated for the first time that Rap1b can positively regulate ESCC cell stemness, as well as designed and synthesized a novel class of Pt(IV) complexes that can effectively inhibit Raplb. In vitro biological studies showed that complex-1 exhibited stronger cytotoxicity than cisplatin and oxaliplatin against a variety of ESCC cells, and effectively reversed cisplatin-induced resistance of TE6 cells by increasing cellular accumulation of platinum and inhibiting cancer cell stemness. Significantly, complex-1 also exhibited strong ability to reversal cisplatin-induced cancer cell resistance and inhibit tumor growth in TE6/cDDP xenograft mice models, with a tumor growth inhibition rate of 73.3 % at 13 mg/kg and did not show significant systemic toxicity. Overall, Rap1b is a promising target to be developed as an effective treatment for ESCC. Complex-1, as the first Pt(IV) complex that can strongly inhibit Rap1b, is also worthy of further in-depth study.


Asunto(s)
Antineoplásicos , Proliferación Celular , Cisplatino , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Cisplatino/farmacología , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones , Proliferación Celular/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Ligandos , Ratones Desnudos , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rap/antagonistas & inhibidores , Ratones Endogámicos BALB C , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/síntesis química , Línea Celular Tumoral , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química
19.
Plant Physiol Biochem ; 210: 108643, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653097

RESUMEN

Drought priming is known to enhance plant low temperature tolerance, whereas polystyrene nanoplastic contamination exerts detrimental effects on plant growth. This study investigates the less-explored influence of nanoplastic contamination on cold stress tolerance in drought-primed plants. We compared the photosynthetic carbon assimilation, carbohydrate metabolism, reactive oxygen species metabolism, and grain yield between the non-primed and drought-primed wheat grown in both nanoplastic-contaminated and healthy soils. Our results reveal that the beneficial effects of drought priming on photosynthetic carbon assimilation and the efficiency of the "water-water" cycle were compromised in the presence of nanoplastics (nPS). Additionally, nPS exposure disturbed carbohydrate metabolism, which impeded source-to-sink transport of sugar and resulted in reduced grain yield in drought-primed plants under low temperature conditions. These findings unveil the suppression of nPS on drought-primed low-temperature tolerance (DPLT) in wheat plants, suggesting an intricate interplay between the induction of stress tolerance and responses to nPS contamination. The study raises awareness about a potential challenge for future crop production.


Asunto(s)
Frío , Sequías , Poliestirenos , Triticum , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/fisiología , Triticum/crecimiento & desarrollo , Suelo/química , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes del Suelo/toxicidad , Nanopartículas
20.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473927

RESUMEN

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial "naïve" and final "primed" states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway.


Asunto(s)
MicroARNs , Células Madre Pluripotentes , Animales , Ratones , Femenino , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/genética , Transducción de Señal , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Estratos Germinativos/metabolismo , MAP Quinasa Quinasa 6
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...