Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Tissue Cell ; 88: 102407, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38776730

RESUMEN

Pulmonary fibrosis is a chronic and progressive lung disorder. The pro-fibrosis factors induced by M2 macrophage phenotype promote the differentiation of fibroblasts into myofibroblasts, which is essential for pulmonary fibrosis. We aimed to explore the role and mechanism of BTB domain and CNC homology 1 (BACH1) in pulmonary fibrosis. BACH1 was knocked down in THP-1 polarized M2 macrophages with or without FOS-like antigen 2 (FOSL2) overexpression, the expression of M2 macrophage markers was detected. Cell viability, migration, invasion and extracellular matrix (ECM) accumulation were estimated by CCK-8, wound healing, transwell, western bot and immunofluorescence staining. Luciferase reporter and chromatin immunoprecipitation assays were used to verify the binding of BACH1 to FOSL2 promotor region. In vivo, a bleomycin (BLM)-induced pulmonary fibrosis mice model was established to evaluate the effect of BACH1 silencing on the histopathological changes, M2 macrophage phenotype and extracellular matrix (ECM) deposition. Expression of proteins was assessed with western blot. Results indicated that BACH1 expression was upregulated in M2 macrophages polarized from THP-1 cells. BACH1 deficiency inhibited the polarization of THP-1 to the M2 macrophage phenotype to promote the transformation of lung fibroblasts into myofibroblasts. Additionally, BACH1 could transcriptionally activate FOSL2 expression in THP-1-derived macrophages to upregulate TGFß/SMAD signaling in HFL-1 cells. The animal experiments indicated that BACH1 knockdown alleviated BLM-induced pulmonary fibrosis, M2 macrophage polarization and inactivated FOSL2/TGFß/SMAD signaling in mice lung tissues. Together, this finding suggests BACH1/FOSL2 may be useful therapeutic targets for the treatment of pulmonary fibrosis.

2.
Nat Commun ; 15(1): 4196, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760357

RESUMEN

Precious metals are core assets for the development of modern technologies in various fields. Their scarcity poses the question of their cost, life cycle and reuse. Recently, an emerging catalysis employing contact-electrification (CE) at water-solid interfaces to drive redox reaction, called contact-electro-catalysis (CEC), has been used to develop metal free mechano-catalytic methods to efficiently degrade refractory organic compounds, produce hydrogen peroxide, or leach metals from spent Li-Ion batteries. Here, we show ultrasonic CEC can successfully drive the reduction of Ag(ac), Rh3+, [PtCl4]2-, Ag+, Hg2+, Pd2+, [AuCl4]-, and Ir3+, in both anaerobic and aerobic conditions. The effect of oxygen on the reaction is studied by electron paramagnetic resonance (EPR) spectroscopy and ab-initio simulation. Combining measurements of charge transfers during water-solid CE, EPR spectroscopy and gold extraction experiments help show the link between CE and CEC. What's more, this method based on water-solid CE is capable of extracting gold from synthetic solutions with concentrations ranging from as low as 0.196 ppm up to 196 ppm, reaching in 3 h extraction capacities ranging from 0.756 to 722.5 mg g-1 in 3 h. Finally, we showed CEC is employed to design a metal-free, selective, and recyclable catalytic gold extraction methods from e-waste aqueous leachates.

3.
Cancer Sci ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38638055

RESUMEN

Biliary tract cancer (BTC) is a highly aggressive malignancy with limited second-line therapy. We conducted this phase 2 trial to evaluate the efficacy and safety of second-line nab-paclitaxel plus sintilimab in advanced BTC. Histologically confirmed advanced BTC patients with documented disease progression after first-line chemotherapy were enrolled. Subjects received nab-paclitaxel 125 mg/m2 on days 1 and 8 plus sintilimab 200 mg on day 1, administered every 3 weeks. The primary end point was the objective response rate (ORR). The secondary end points were progression-free survival (PFS), overall survival (OS), and adverse reactions. Simultaneously, next-generation sequencing, programmed cell death ligand 1 immunohistochemistry and multiplex immunofluorescence of tumor-infiltrating lymphocytes were applied to explore potential biomarkers. Twenty-six subjects were consecutively enrolled. The ORR was 26.9% (7/26), including two complete responses and five partial responses, which met the primary end point. The disease control rate was 61.5% (16/26). The median PFS was 169 days (about 5.6 months, 95% confidence interval [CI] 60-278 days). The median OS was 442 days (about 14.7 months, 95% CI 298-586 days). Grade 3 treatment-related adverse events (TRAEs) were mainly anemia (27%), leukopenia (23%), neutropenia (19%), and peripheral sensory neuropathy (8%). No grade 4 or 5 TRAEs occurred. Biomarker analysis suggested that positive PD-L1 and high proportions of CD8+ T-cell infiltration were correlated with improved clinical outcome. Nab-paclitaxel plus sintilimab is a potentially effective and tolerable second-line regimen for advanced BTC that deserves to be studied in large-scale trials. PD-L1 status and CD8+ T cell infiltration might be promising biomarkers for efficacy prediction.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38621199

RESUMEN

Recently, the combination of the piezoelectric effect in the photocatalytic process, referred to as piezo-photocatalysis, has gained considerable attention as a promising approach for enhancing the degradation of organic pollutants. In this investigation, we studied the piezo-photocatalysis by fabricating arrays of barium strontium titanate (Ba0.7Sr0.3TiO3) nanorods (BST NRs) on a glass substrate as recoverable catalysts. We found that the degradation rate constant k of the rhodamine B solution achieved 0.0447 min-1 using poled BST NRs in the piezo-photocatalytic process, indicating a 2-fold increase in efficiency compared to the photocatalytic process (0.00183 min-1) utilizing the same material. This is mainly ascribed to the generation of the piezopotential in the poled BST NRs under ultrasonic vibration. Moreover, the BST NR array demonstrated a hydrogen (H2) production rate of 411.5 µmol g-1 h-1. In the photoelectrochemical process, the photocurrent density of poled BST NRs achieved 1.97 mA cm-2 at an applied potential of 1.23 V (ERHE (reversible hydrogen electrode)) under ultrasonic vibrations, representing a 1.7-fold increase compared with the poled BST NRs without ultrasonic vibrations. The measurement results from the liquid chromatograph mass spectrometer (LC-MS) demonstrated the formulation of a degradation pathway for rhodamine B molecules. Moreover, ab initio molecular dynamics (AIMD) simulation results demonstrate the dominance of hydroxyl radicals (•OH) rather than superoxide radicals (•O2-) in the degradation process. This study not only benefits the understanding of the principle of the piezo-photocatalytic process but also provides a new perspective for improving the catalytic efficiency for organic pollutants degradation.

5.
Cancer Med ; 13(8): e7131, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38629255

RESUMEN

BACKGROUND: More than half of neuroendocrine tumor (NET) patients will experience liver metastasis, and interventional therapy represented by transarterial embolization (TAE) is the main local treatment method. Surufatinib is recommended as a standard systemic treatment for advanced NETs. The efficacy and safety of surufatinib combined with TAE in the treatment of liver metastasis are undetermined. This study was conducted to compare the clinical outcome of surufatinib combined with TAE versus surufatinib monotherapy in liver metastatic NETs. METHODS: This is a prospective, multicenter, open-label, and randomized controlled trial. Patients diagnosed with liver metastatic NETs will be enrolled. Participants are randomly assigned in a 1:1 ratio to either the experimental group or the control group. Patients will be treated with surufatinib plus TAE in the experimental group, while patients in the control group will receive surufatinib monotherapy. The primary endpoint is progression-free survival (PFS) assessed by a blinded independent image review committee (BIIRC). The secondary endpoints are investigator-assessed PFS, liver-specific objective response rate (ORR), objective response rate (ORR), disease control rate (DCR), overall survival (OS), and incidence of adverse events. DISCUSSION: This is the first prospective study to investigate the efficacy of surufatinib combined with TAE. We expect this trial to propose a new and effective treatment strategy for liver metastatic NETs.


Asunto(s)
Neoplasias Gastrointestinales , Indoles , Neoplasias Hepáticas , Tumores Neuroendocrinos , Pirimidinas , Sulfonamidas , Humanos , Estudios Prospectivos , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/patología , Neoplasias Gastrointestinales/patología , Neoplasias Hepáticas/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
6.
Anim Biosci ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38665085

RESUMEN

Objective: There is a strong relationship between the content of beneficial fatty acids in milk and milk fat metabolic activity in the mammary gland. To improve milk quality, it is therefore necessary to study fatty acid metabolism in bovine mammary gland tissue. In adipose tissue, peroxisome proliferator-activated receptor gamma (PPARG), the core transcription factor, regulates the fatty acid metabolism gene network and determines fatty acid deposition. However, its regulatory effects on mammary gland fatty acid metabolism during lactation have rarely been reported. Methods: Transcriptome sequencing was performed during the prelactation period and the peak lactation period to examine mRNA expression. The significant upregulation of PPARG drew our attention and led us to conduct further research. Results: According to bioinformatics prediction, dual-luciferase reporter system detection, qRT‒PCR and Western blotting, miR-130a and miR-130b could directly target PPARG and inhibit its expression. Furthermore, triglyceride and Oil Red O staining proved that miR-130a and miR-130b inhibited milk fat metabolism in BMECs, while PPARG promoted this metabolism. In addition, we also found that the coexpression of miR-130a and miR-130b significantly enhanced their ability to regulate milk fat metabolism. Conclusion: In conclusion, our findings indicated that miR-130a and miR-130b could target and repress PPARG and that they also have a functional superposition effect. miR-130a and miR-130b seem to synergistically regulate lipid catabolism via the control of PPARG in BMECs. In the long-term, these findings might be helpful in developing practical means to improve high-quality milk.

7.
Adv Mater ; : e2313288, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537247

RESUMEN

Recently, perovskite photodetectors (PDs) are risen to prominence due to substantial research interest. Beyond merely tweaking the composition of materials, a cutting-edge advancement lies in leveraging the innate piezoelectric polarization properties of perovskites themselves. Here, the investigation shows utilizing Ti3C2Tx, a typical MXene, as an intermediate layer for significantly boosting the piezoelectric property of MAPbI3 thin films. This improvement is primarily attributed to the enhanced polarization of the methylammonium (MA+) groups within MAPbI3, induced by the OH groups present in Ti3C2Tx. A flexible PD based on the MAPbI3/MXene heterostructure is then fabricated. The new device is sensitive to a wide range of wavelengths, displays greatly enhanced performance owing to the piezo-phototronic coupling. Moreover, the device is endowed with a greatly reduced response time, down to millisecond level, through the pyro-phototronic effect. The characterization shows applying a -1.2% compressive strain on the PD leads to a remarkable 102% increase in the common photocurrent, and a 76% increase in the pyro-phototronic current. The present work reveals how the emerging piezo-phototronic and pyro-phototronic effects can be employed to design high-performance flexible perovskite PDs.

8.
Lipids Health Dis ; 23(1): 88, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528544

RESUMEN

The accumulation of reactive oxygen species (ROS) within the bone marrow microenvironment leads to diminished osteogenic differentiation and heightened lipogenic differentiation of mesenchymal stem cells residing in the bone marrow, ultimately playing a role in the development of osteoporosis (OP). Mitigating ROS levels is a promising approach to counteracting OP. In this study, a nanozyme composed of magnesium-based zeolitic imidazolate frameworks (Mg-ZIF) was engineered to effectively scavenge ROS and alleviate OP. The results of this study indicate that Mg-ZIF exhibits significant potential in scavenging ROS and effectively promoting osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Additionally, Mg-ZIF was found to inhibit the differentiation of BMSCs into adipose cells. In vivo experiments further confirmed the ability of Mg-ZIF to mitigate OP by reducing ROS levels. Mechanistically, Mg-ZIF enhances the differentiation of BMSCs into osteoblasts by upregulating lipid metabolic pathways through ROS scavenging. The results indicate that Mg-ZIF has potential as an effective therapeutic approach for the treatment of osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis , Humanos , Osteogénesis/genética , Magnesio , Metabolismo de los Lípidos/genética , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Diferenciación Celular , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Osteoporosis/metabolismo , Células de la Médula Ósea
9.
BMC Cancer ; 24(1): 307, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448945

RESUMEN

BACKGROUND: Preoperative prediction of International Federation of Gynecology and Obstetrics (FIGO) stage in patients with epithelial ovarian cancer (EOC) is crucial for determining appropriate treatment strategy. This study aimed to explore the value of contrast-enhanced CT (CECT) radiomics in predicting preoperative FIGO staging of EOC, and to validate the stability of the model through an independent external dataset. METHODS: A total of 201 EOC patients from three centers, divided into a training cohort (n = 106), internal (n = 46) and external (n = 49) validation cohorts. The least absolute shrinkage and selection operator (LASSO) regression algorithm was used for screening radiomics features. Five machine learning algorithms, namely logistic regression, support vector machine, random forest, light gradient boosting machine (LightGBM), and decision tree, were utilized in developing the radiomics model. The optimal performing algorithm was selected to establish the radiomics model, clinical model, and the combined model. The diagnostic performances of the models were evaluated through receiver operating characteristic analysis, and the comparison of the area under curves (AUCs) were conducted using the Delong test or F-test. RESULTS: Seven optimal radiomics features were retained by the LASSO algorithm. The five radiomics models demonstrate that the LightGBM model exhibits notable prediction efficiency and robustness, as evidenced by AUCs of 0.83 in the training cohort, 0.80 in the internal validation cohort, and 0.68 in the external validation cohort. The multivariate logistic regression analysis indicated that carcinoma antigen 125 and tumor location were identified as independent predictors for the FIGO staging of EOC. The combined model exhibited best diagnostic efficiency, with AUCs of 0.95 in the training cohort, 0.83 in the internal validation cohort, and 0.79 in the external validation cohort. The F-test indicated that the combined model exhibited a significantly superior AUC value compared to the radiomics model in the training cohort (P < 0.001). CONCLUSIONS: The combined model integrating clinical characteristics and radiomics features shows potential as a non-invasive adjunctive diagnostic modality for preoperative evaluation of the FIGO staging status of EOC, thereby facilitating clinical decision-making and enhancing patient outcomes.


Asunto(s)
Neoplasias Ováricas , Radiómica , Femenino , Humanos , Algoritmos , Carcinoma Epitelial de Ovario/diagnóstico por imagen , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/cirugía , Tomografía Computarizada por Rayos X
10.
Int Immunopharmacol ; 131: 111887, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38503018

RESUMEN

BACKGROUND: The purpose of this study was to explore the dynamic changes of genomic mutations and their correlations with the efficacy in metastatic colorectal cancer (mCRC) patients treated with cetuximab plus mFOLFOX as the first-line treatment. METHODS: We included mCRC patients from January 2018 to October 2020 as a studied cohort which were treated with cetuximab plus mFOLFOX as first line therapy. Blood samples were collected for circulating tumor DNA (ctDNA) test at three timepoints: before the first-line therapy(baseline), at the time of first-line progression and at the time of second-line progression. Progression-free survival was considered as the primary endpoint while objective response rate and overall survival were determined as the secondary endpoints. RESULTS: Totally 39 patients received first-line treatment, of which 25 patients entered the second-line treatment, while 10 patients entered the third-line treatment. The median follow-up time was 16.4 months (95 %CI, 14.8-19.3). Along the treatment from first-line progress disease (PD) to second-line PD, proportions of TP53 (12/18, 67 %), APC (10/18, 56 %), FBXW7 (3/18, 17 %), and AMER1 (2/18, 11 %) were gradually increased according to results of single nucleotide variation (SNV). CONCLUSIONS: Resistant gene mutations caused by anti-EGFR drugs in RAS/BRAF wild-type mCRC patients can be observed by dynamic ctDNA analysis. TP53 and AMER1 mutations, tumor mutational burden (TMB) levels, and TP53/AMER1 co-mutation may predict the efficacy of the first-line cetuximab-contained treatment. Situations of genetic mutations were differentiated from first-line PD to second-line PD, which indicated that mutation detection may contribute to predict prognosis of mCRC patients.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Humanos , Cetuximab/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Recto/tratamiento farmacológico , Mutación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
11.
Food Chem ; 447: 138962, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38518614

RESUMEN

A bacteriocin paracin wx3 was investigated as a candidate of natural preservative to control green pepper soft rot. Firstly, paracin wx3 was heterologously expressed in Pichia pastoris X33 with an improved yield of 0.537 g/L. Its size and amino acid sequence were confirmed by Tricine-SDS-PAGE and LC-MS/MS. Then, result of antibacterial activity showed that its MIC value against Pectobacterium carotovorum was 16 µg/mL. In vitro, paracin wx3 completely killed the pathogen at high concentrations ≥8 × MIC. In vivo, disease incidence of green pepper soft rot was decreased from 90% (control) to <2% (8 × MIC). Subsequently, results of action mode showed that paracin wx3 inhibited the growth of pathogen by pore-formation on cell membrane. Last, paracin wx3 treatment reduced losses of weight, firmness, total soluble solid, Vc of green pepper during storage. It also inhibited the production of soft rot volatile p-xylene, 1-butanol, 2-methyl-2-propanol, 3-hydroxybutan-2-one-D, 2-pentyl furan, butanal, etc.


Asunto(s)
Bacteriocinas , Capsicum , Bacteriocinas/genética , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Capsicum/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antibacterianos/química , Enfermedades de las Plantas/microbiología
12.
J Ethnopharmacol ; 326: 117941, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38387684

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Iron is an essential micronutrient for maintaining physiological activities, especially for highly active cardiomyocytes. Inappropriate iron overload or deficiency has a significant impact on the incidence and severity of cardiovascular diseases (CVD). Iron overload exerts potentially deleterious effects on doxorubicin (DOX) cardiomyopathy, atherosclerosis, and myocardial ischemia-reperfusion injury (MI/RI) by participating in lipid peroxides production. Notably, iron overload-associated cell death has been defined as a possible mechanism for ferroptosis. At present, some traditional herbal medicines and extracts have been included in the study of regulating iron overload and the subsequent therapeutic effect on CVD. AIM OF THE STUDY: To give an outline of iron metabolism and ferroptosis in cardiomyocytes and to focus on herbal medicines and extracts to prevent iron overload in CVD. MATERIALS AND METHODS: Literature information was systematically collected from ScienceDirect, PubMed, Google Scholar, Web of Science, China National Knowledge Infrastructure, WanFang data, as well as classic books and clinical reports. RESULTS: After understanding the mechanism of iron overload on CVD, this paper reviews the therapeutic function of various herbal medicines in eliminating iron overload in CVD. These include Chinese herbal compound prescriptions (Salvia miltiorrhiza injection, Gegen Qinlian decoction, Tongxinluo, Banxia-Houpu decoction), plant extracts, phenylpropanoids, flavonoids, terpenoids, and polyphenols. Among them, flavonoids are considered to be the most promising compounds because of their prominent iron chelation. Mechanically, these herbal medicines act on the Nrf2 signaling pathway, AMPK signaling pathway, and KAT5/GPX4 signaling pathway, thereby attenuating iron overload and lipid peroxidation in CVD. CONCLUSION: Our review provides up-to-date information on herbal medicines that exert cardiovascular protective effects by modulating iron overload and ferroptosis. These herbal medicines hold promise as a template for preventing iron overload in CVD.


Asunto(s)
Enfermedades Cardiovasculares , Sobrecarga de Hierro , Plantas Medicinales , Enfermedades Cardiovasculares/tratamiento farmacológico , Plantas Medicinales/metabolismo , Extractos Vegetales/uso terapéutico , Sobrecarga de Hierro/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Hierro/metabolismo , Flavonoides/uso terapéutico
13.
Cancer ; 130(S8): 1435-1448, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358781

RESUMEN

BACKGROUND: Patients with triple-positive breast cancer (TPBC) have a higher risk of recurrence and lower survival rates than patients with other luminal breast cancers. However, there are few studies on the predictive biomarkers of prognosis and treatment responses in TPBC. METHODS: Proliferation essential genes (PEGs) were acquired from clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) technology, and cohorts of patients with TPBC were obtained from public databases and our cohort. To develop a TPBC-PEG signature, Cox regression and least absolute shrinkage and selection operator regression analyses were applied. Functional analyses were performed with gene set enrichment analysis. The relationship between candidate genes and neoadjuvant chemotherapy (NACT) sensitivity was explored via real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) on the basis of clinical samples. RESULTS: Among 900 TPBC-PEGs, 437 showed significant differential expression between TPBC and normal tissues. Three prognostic PEGs (actin-like 6A [ACTL6A], chaperonin containing TCP1 subunit 2 [CCT2], and threonyl-TRNA synthetase [TARS]) were identified and used to construct the PEG signature. Patients with high PEG signature scores exhibited a worse overall survival and lower sensitivity to NACT than patients with low PEG signature scores. RT-qPCR results indicated that ACTL6A and CCT2 expression were significantly upregulated in patients who lacked sensitivity to NACT. IHC results showed that the ACTL6A protein was highly expressed in patients with NACT resistance and nonpathological complete responses. CONCLUSIONS: This efficient PEG signature prognostic model can predict the outcomes of TPBC. Furthermore, ACTL6A expression level was associated with the response to NACT, and could serve as an important factor in predicting prognosis and drug sensitivity of patients with TPBC.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Actinas/genética , Genes Esenciales , Terapia Neoadyuvante/métodos , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/uso terapéutico , Proteínas de Unión al ADN/genética
14.
Funct Plant Biol ; 512024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38417846

RESUMEN

The MYB transcription factor (TF) are among the largest gene families of plants being responsible for several biological processes. The R2R3-MYB gene family are integral player regulating plant primary and secondary metabolism, growth and development, and responses to hormones and stresses. The phylogenetic analysis combined with gene structure analysis and motif determination resulted in division of R2R3-MYB gene family into 27 subgroups. Evidence generated from synteny analyses indicated that CqR2R3-MYBs gene family is featured by tandem and segmental duplication events. On the basis of RNA-Seq data, the expression patterns of different tissues under salt treatment were investigated resulting CqR2R3-MYB genes high expression both in roots and stem of quinoa (Chenopodium quinoa ) plants. More than half of CqR2R3-MYB genes showed expression under salt stress. Based on this result, CqR2R3-MYB s may regulate quinoa plant growth development and resistance to abiotic stresses. These findings provided comprehensive insights on role of CqR2R3-MYBs gene family members in quinoa and candidate MYB gene family members can be further studies on their role for abiotic stress tolerance in crop plants.


Asunto(s)
Chenopodium quinoa , Genes myb , Genes myb/genética , Filogenia , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
15.
BMC Complement Med Ther ; 24(1): 21, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178115

RESUMEN

BACKGROUND: This study aims to assess the efficacy and safety of Qingpeng ointment (QPO), a Tibetan medicine for alleviating symptoms in individuals with acute gouty arthritis (AGA). METHODS: This study was a randomized, double-blind, placebo-controlled trial that involved individuals with AGA whose joint pain, as measured on a visual analog scale (VAS) from 0 to 10, was equal to or greater than 3. The participants were randomly assigned to either the QPO or the placebo group and received their respective treatments twice daily for seven consecutive days. In case of intolerable pain, the participants were allowed to use diclofenac sodium sustained-release tablets as a rescue medicine. The primary outcomes measured were joint pain and swelling, while the secondary outcomes included joint mobility, redness, serum uric acid levels, C-reactive protein levels, and the amount of remaining rescue medicine. Any adverse events that occurred during the trial were also recorded. RESULTS: A total of 203 cases were divided into two groups, with balanced baselines: 102 in the QPO group and 101 in the placebo group. For joint pain, differences between the groups were notable in the VAS scores [1.75 (0, 3.00) versus 2.00 (1.00, 3.50); P = 0.038], changes in VAS [5.00 (3.00, 6.00) versus 4.00 (2.00, 6.00); P = 0.036], and disappearance rate [26.47% compared to 15.84%; P = 0.046] after treatment. Concerning joint swelling, significant between-group differences were observed in the VAS scores [1.00 (0, 2.30) versus 2.00 (0.70, 3.00); P = 0.032] and disappearance rate [33.33% compared to 21.78%; P = 0.046] at treatment completion. The QPO group exhibited a statistically significant mobility improvement compared to the placebo group (P = 0.004). No significant differences were found in other secondary outcomes. Five patients, four from the QPO group and one from the other, encountered mild adverse events, primarily skin irritation. All of these cases were resolved after dosage reduction or discontinuation of the medication. CONCLUSIONS: Compared to the placebo, QPO exhibits positive effects on AGA by alleviating pain, reducing swelling, and enhancing joint mobility, without causing significant adverse effects. TRIAL REGISTRATION: ISRCTN34355813. Registered on 25/01/2021.


Asunto(s)
Artritis Gotosa , Humanos , Artritis Gotosa/tratamiento farmacológico , Pomadas/uso terapéutico , Medicina Tradicional Tibetana/efectos adversos , Ácido Úrico , Dolor/tratamiento farmacológico , Artralgia
16.
Nat Commun ; 15(1): 757, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38272926

RESUMEN

Ball milling is a representative mechanochemical strategy that uses the mechanical agitation-induced effects, defects, or extreme conditions to activate substrates. Here, we demonstrate that ball grinding could bring about contact-electro-catalysis (CEC) by using inert and conventional triboelectric materials. Exemplified by a liquid-assisted-grinding setup involving polytetrafluoroethylene (PTFE), reactive oxygen species (ROS) are produced, despite PTFE being generally considered as catalytically inert. The formation of ROS occurs with various polymers, such as polydimethylsiloxane (PDMS) and polypropylene (PP), and the amount of generated ROS aligns well with the polymers' contact-electrification abilities. It is suggested that mechanical collision not only maximizes the overlap in electron wave functions across the interface, but also excites phonons that provide the energy for electron transition. We expect the utilization of triboelectric materials and their derived CEC could lead to a field of ball milling-assisted mechanochemistry using any universal triboelectric materials under mild conditions.

17.
Sci Rep ; 14(1): 625, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182871

RESUMEN

Diabetic nephropathy (DN), a common microvascular complicating disease of diabetes. Lupenone, a pentacyclic triterpenoid, has anti-inflammatory effects and can prevent type 2 diabetes mellitus and treat renal damage, however, the effects and mechanisms of lupenone in DN remain unclear. Thereby,the MTT method was used to investigate the antiproliferative effect of lupenoneon the cell line rat glomerular mesangial cells (HBZY-1). Molecular docking was used to investigate the combination of lupenone and MCP-1, IL-1ß, TNF-α, IKKß, IκBα, and NF-κB p65 proteins. The expression of mRNA of the pro-inflammatory cytokines (MCP-1, IL-1ß and TNF-α) and the NF-κB signalling pathway in HBZY-1 cells were assessed by RT-PCR. The protein expressions of pro-inflammatory cytokines and NF-κB pathway were got by Western blot. Result showed that lupenone inhibited the proliferative activity of HBZY-1 cells at non-cytotoxic concentrations. Molecular docking results showed that lupenone combined well with the target proteins. Moreover, lupenone could significantly reduced the mRNA and protein expressions for pro-inflammatory cytokines and IKKß, p-p65 and p-IκBα. Lupenone may play an anti-inflammatory role in DN treatment by inhibiting the NF-κB signalling pathway. These results provided a new understanding of the pharmacological mechanisms of lupenone in treatment of DN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Triterpenos , Animales , Ratas , FN-kappa B , Simulación del Acoplamiento Molecular , Inhibidor NF-kappaB alfa , Quinasa I-kappa B , Factor de Necrosis Tumoral alfa , Triterpenos/farmacología , Citocinas/genética , Interleucina-1beta , Antiinflamatorios/farmacología , ARN Mensajero
18.
Cell Commun Signal ; 22(1): 35, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216949

RESUMEN

OBJECTIVE: The CD155/TIGIT axis has attracted considerable interest as an emerging immune checkpoint with potential applications in cancer immunotherapy. Our research focused on investigating the role of CD155/TIGIT checkpoints in the progression of triple-negative breast cancer (TNBC). METHODS: We evaluated CD155 and TIGIT expression in TNBC tissues using both immunohistochemistry (IHC) and gene expression profiling. Our experiments, both in vivo and in vitro, provided evidence that inhibiting the CD155/TIGIT pathway reinstates the ability of CD8 + T cells to generate cytokines. To assess the impact of CD155/TIGIT signaling blockade, we utilized Glucose Assay Kits and Lactate Assay Kits to measure alterations in glucose and lactate levels within CD8 + T cells. We employed western blotting (WB) to investigate alterations in glycolytic-related proteins within the PI3K/AKT/mTOR pathways following the inhibition of CD155/TIGIT signaling. RESULTS: CD155 exhibits heightened expression within TNBC tissues and exhibits a negative correlation with the extent of infiltrating CD8 + T cells. Furthermore, patients with TNBC demonstrate elevated levels of TIGIT expression. Our findings indicate that the interaction between CD155 and TIGIT disrupts the glucose metabolism of CD8 + T cells by suppressing the activation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the reduced production of cytokines by CD8 + T cells. Both in vivo and in vitro experiments have conclusively demonstrated that the inhibition of CD155/TIGIT interaction reinstates the capacity of CD8 + T cells to generate cytokines. Moreover, in vivo administration of the blocking antibody against TIGIT not only inhibits tumor growth but also augments the functionality of CD8 + T lymphocytes. CONCLUSIONS: Our research findings strongly suggest that CD155/TIGIT represents a promising therapeutic target for treating TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Linfocitos T CD8-positivos , Citocinas/metabolismo , Glucosa/metabolismo , Lactatos/metabolismo , Reprogramación Metabólica , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo
19.
J Affect Disord ; 347: 293-298, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37992779

RESUMEN

BACKGROUND: Major depressive disorder (MDD) and schizophrenia (SZ) are serious psychiatric disorders that, despite exhibiting different diagnostic criteria, exhibit significant overlap regarding the biological and clinical features of affected patients. While prior evidence has shown that interhemispheric functional connectivity (FC) is abnormal in MDD and SZ, the particular similarities and differences that unify and characterize MDD and SZ regarding these interhemispheric FC patterns remain to be characterized. This study was thus designed to conduct an in-depth analysis of MDD- and SZ-related patterns of interhemispheric FC. METHODS: This study enrolled MDD patients, SZ patients, and normal control (NC) individuals (n = 36 each). Resting-state functional MRI (rs-fMRI) studies of these patients were conducted, after which voxel-mirrored homotopic connectivity (VMHC) was used to analyze the preprocesses rs-fMRI data. The VMHC values in these different values were then compared through one-way ANOVAs and post hoc analyses. RESULTS: Significant differences were observed in both the striatum and middle frontal gyrus (MFG) when comparing these three groups. Through pairwise comparisons, MDD patients but not SZ patients exhibited reduced MFG VMHC values relative to the NC individuals. Conversely, striatum VMHC values significantly increased in SZ patients relative to NC individuals and MDD patients. CONCLUSION: These results support the interhemispheric functional disconnection hypothesis as a basis for the pathogenesis of MDD and SZ. The observed differences in interhemispheric FC in the MFG and striatum of MDD and SZ patients will offer a neuroimaging basis that can aid in the differential diagnosis of these debilitating conditions.


Asunto(s)
Trastorno Depresivo Mayor , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Depresión , Imagen por Resonancia Magnética/métodos , Neuroimagen , Encéfalo/diagnóstico por imagen
20.
Chemosphere ; 349: 140960, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104734

RESUMEN

Activated carbon enriched with high concentrations of gentamicin (ACG) was generated in the production process of gentamicin. Inappropriate handling methods for ACG not only squanders carbon resource, but also seriously hinders achieving global carbon neutrality and hazardous to human health. In the present work, thermal and carbon co-activated persulfate method (TC-PS) was developed to regenerate ACG with degrading gentamicin. The results showed that ACG was effectively regenerated by TC-PS, restoring the adsorption performance for gentamicin. When the treatment temperature was 80 °C, the persulfate dosage was 20 mM and the initial pH was 3.0, the degradation efficiency of gentamicin reached 100%. The HO• and SO4•- were the major reactive species for gentamicin degradation. The possible degradation routes of gentamicin were proposed and the safety assessment indicated that the produced intermediates during the regeneration process of ACG by TC-PS have insignificant impact on the biological and ecological environment.


Asunto(s)
Calor , Contaminantes Químicos del Agua , Humanos , Sulfatos , Carbón Orgánico , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA