Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Front Oncol ; 14: 1375648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706591

RESUMEN

Background: For patients with hilar cholangiocarcinoma (HC) undergoing hemi-hepatectomy, there are controversies regarding the requirement of, indications for, and timing of preoperative biliary drainage (PBD). Dynamic three-dimensional volume reconstruction could effectively evaluate the regeneration of liver after surgery, which may provide assistance for exploring indications for PBD and optimal preoperative bilirubin value. The purpose of this study was to explore the indications for PBD and the optimal preoperative bilirubin value to improve prognosis for HC patients undergoing hemi-hepatectomy. Methods: We retrospectively analyzed the data of HC patients who underwent hemi-hepatectomy in the First Affiliated Hospital of China Medical University from 2012 to 2023. The liver regeneration rate was calculated using three-dimensional volume reconstruction. We analyzed the factors affecting the liver regeneration rate and occurrence of postoperative liver insufficiency. Results: This study involved 83 patients with HC, which were divided into PBD group (n=36) and non-PBD group (n=47). The preoperative bilirubin level may be an independent risk factor affecting the liver regeneration rate (P=0.014) and postoperative liver insufficiency (P=0.016, odds ratio=1.016, ß=0.016, 95% CI=1.003-1.029). For patients whose initial bilirubin level was >200 µmol/L (n=45), PBD resulted in better liver regeneration in the early stage (P=0.006) and reduced the incidence of postoperative liver insufficiency [P=0.012, odds ratio=0.144, 95% confidence interval (CI)=0.031-0.657]. The cut-off value of bilirubin was 103.15 µmol/L based on the liver regeneration rate. Patients with a preoperative bilirubin level of ≤103.15 µmol/L shown a better liver regeneration (P<0.01) and lower incidence of postoperative hepatic insufficiency (P=0.011, odds ratio=0.067, 95% CI=0.008-0.537). Conclusion: For HC patients undergoing hemi-hepatectomy whose initial bilirubin level is >200 µmol/L, PBD may result in better liver regeneration and reduce the incidence of postoperative liver insufficiency. Preoperative bilirubin levels ≤103.15 µmol/L maybe recommended for leading to a better liver regeneration and lower incidence of postoperative hepatic insufficiency.

2.
Light Sci Appl ; 13(1): 117, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38782914

RESUMEN

The traditional plasma etching process for defining micro-LED pixels could lead to significant sidewall damage. Defects near sidewall regions act as non-radiative recombination centers and paths for current leakage, significantly deteriorating device performance. In this study, we demonstrated a novel selective thermal oxidation (STO) method that allowed pixel definition without undergoing plasma damage and subsequent dielectric passivation. Thermal annealing in ambient air oxidized and reshaped the LED structure, such as p-layers and InGaN/GaN multiple quantum wells. Simultaneously, the pixel areas beneath the pre-deposited SiO2 layer were selectively and effectively protected. It was demonstrated that prolonged thermal annealing time enhanced the insulating properties of the oxide, significantly reducing LED leakage current. Furthermore, applying a thicker SiO2 protective layer minimized device resistance and boosted device efficiency effectively. Utilizing the STO method, InGaN green micro-LED arrays with 50-, 30-, and 10-µm pixel sizes were manufactured and characterized. The results indicated that after 4 h of air annealing and with a 3.5-µm SiO2 protective layer, the 10-µm pixel array exhibited leakage currents density 1.2 × 10-6 A/cm2 at -10 V voltage and a peak on-wafer external quantum efficiency of ~6.48%. This work suggests that the STO method could become an effective approach for future micro-LED manufacturing to mitigate adverse LED efficiency size effects due to the plasma etching and improve device efficiency. Micro-LEDs fabricated through the STO method can be applied to micro-displays, visible light communication, and optical interconnect-based memories. Almost planar pixel geometry will provide more possibilities for the monolithic integration of driving circuits with micro-LEDs. Moreover, the STO method is not limited to micro-LED fabrication and can be extended to design other III-nitride devices, such as photodetectors, laser diodes, high-electron-mobility transistors, and Schottky barrier diodes.

3.
Ecotoxicol Environ Saf ; 276: 116324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636260

RESUMEN

Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.


Asunto(s)
Biodegradación Ambiental , Colorantes , Lacasa , Proteómica , Hongos Shiitake , Tetraciclina , Lacasa/metabolismo , Lacasa/genética , Tetraciclina/toxicidad , Tetraciclina/farmacología , Colorantes/toxicidad , Colorantes/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Bacillus subtilis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Antibacterianos/farmacología
4.
J Agric Food Chem ; 72(2): 1339-1353, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38183657

RESUMEN

Two offline multidimensional chromatography/high-resolution mass spectrometry systems (method 1: fractionation and online two-dimensional liquid chromatography, 2D-LC; method 2: fractionation and offline 2D-LC) were established to characterize the metabolites simultaneously from three Glycyrrhiza species. Ion exchange chromatography in the first-dimensional (1D) separation was well fractionated between the acidic (mainly triterpenoids) and weakly acidic components (flavonoids). These obtained subsamples got sophisticated separation by the second (2D) and third dimension (3D) of chromatography either by online reversed-phase chromatography × reversed-phase chromatography (RPC × RPC) or offline hydrophilic interaction chromatography × RPC (HILIC × RPC). Orthogonality for the 2D/3D separations reached 0.73 for method 1 and 0.81 for method 2, respectively. We could characterize 1097 compounds from three Glycyrrhiza species based on an in-house library and 33 reference standards, involving 618 by method 1 and 668 by method 2, respectively. They exhibited a differentiated performance and complementarity in identifying the multiple subclasses of Glycyrrhiza components.


Asunto(s)
Cromatografía de Fase Inversa , Glycyrrhiza , Espectrometría de Masas , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Interacciones Hidrofóbicas e Hidrofílicas
5.
ACS Appl Mater Interfaces ; 16(5): 6088-6097, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38278516

RESUMEN

Recent advancements in power electronics have been driven by Ga2O3-based ultrawide bandgap (UWBG) semiconductor devices, enabling efficient high-current switching. However, integrating Ga2O3 power devices with essential silicon CMOS logic circuits for advanced control poses fabrication challenges. Researchers have introduced Ga2O3-based NMOS and pseudo-CMOS circuits for integration, but these circuits may either consume more power or increase the design complexity. Hence, this article proposes Ga2O3-based CMOS realized using heterogeneous 3D-stacked bilayer ambipolar transistors. These ambipolar transistors consist of HfO2/NiO/Ga2O3/NiO/HfO2 heterostructures that are wrapped around by the Ti/Au gate electrode, resulting in record high electron and hole current on/off ratios of 109 and 107. The threshold voltage, subthreshold swing, and current density measured from 100 ambipolar devices (across 5 batches) are around -7.99 ± 0.92 V (p-channel) and 7.81 ± 0.81 V (n-channel), 0.59 ± 0.07 V/dec (p-channel) and 0.61 ± 0.06 V/dec (n-channel), and 0.99 ± 0.26 mA/mm (p-channel) and 58.23 ± 12.99 mA/mm (n-channel), respectively. All the 100 ambipolar devices showed decent long-term stability over a period of 200 days, exhibiting reliable electrical performance. The threshold voltage shift (ΔVTH) after negative bias stressing for a period of 3500 s is around 11.52 V (p-channel) and 10.21 V (n-channel), respectively. Notably, the n-channels exhibit ∼2 orders higher on/off ratio than the best Ga2O3 unipolar transistors at 300 °C. Moreover, the polarities of ambipolar transistors are reconfigurable into p- or n-MOS, which are integrated to demonstrate CMOS inverter, NOR, and NAND logic gates. The switching periods from "0" to "1" and from "1" to "0" of NOR are 0.12 and 0.17 µs, and those of NAND are 0.16 and 0.13 µs. This work lays the foundation of oxide-semiconductor-based CMOS for future integrated electronics.

6.
IEEE Trans Cybern ; 54(4): 2408-2419, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37018616

RESUMEN

Due to the complex network environment, the feedback information cannot be timely received by the controller. This article proposes a method on the exponential synchronization for the Markovian jump neural networks, which is achieved by designing a new asynchronous delayed-feedback controller, with its feedback delay taken into account. The quantized relationship between the exponential synchronization and the feedback delay is derived from a new designed Lyapunov functional, to acquire delay boundaries. With the help of a hidden-Markov process, the designed controller shows asynchrony, which allows controller modes to run free. In particular, the detection probability is assumed to be bounded known, marking a breakthrough over existing results. Moreover, the proposed method proves to be applicable in both synchronous and asynchronous cases. By using the proposed method, the computation freedom of the controller gain matrix can be substantially augmented. Further, comparative numerical studies are implemented to validate the effectiveness and superiority of the proposed method.

7.
Food Chem ; 439: 138106, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056336

RESUMEN

Accurate characterization of Panax herb ginsenosides is challenging because of the isomers and lack of sufficient reference compounds. More structural information could help differentiate ginsenosides and their isomers, enabling more accurate identification. Based on the VionTM ion-mobility high-resolution LC-MS platform, a multidimensional information library for ginsenosides, namely GinMIL, was established by predicting retention time (tR) and collision cross section (CCS) through machine learning. Robustness validation experiments proved tR and CCS were suitable for database construction. Among three machine learning models we attempted, gradient boosting machine (GBM) exhibited the best prediction performance. GinMIL included the multidimensional information (m/z, molecular formula, tR, CCS, and some MS/MS fragments) for 579 known ginsenosides. Accuracy in identifying ginsenosides from diverse ginseng products was greatly improved by a unique LC-MS approach and searching GinMIL, demonstrating a universal Panax saponins library constructed based on hierarchical design. GinMIL could improve the accuracy of isomers identification by approximately 88%.


Asunto(s)
Ginsenósidos , Panax , Saponinas , Ginsenósidos/análisis , Espectrometría de Masas en Tándem/métodos , Panax/química , Cromatografía Líquida de Alta Presión/métodos
8.
Reprod Biol ; 24(1): 100845, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159424

RESUMEN

Hepatitis B virus (HBV) infection is associated with male infertility. The mechanism includes an increase in chromosomal instability in sperm, which has an adverse effect on sperm viability and function. Sertoli cells (SCs) are vital in spermatogenesis because they use glycolysis to provide energy to germ cells and themselves. HBV infection impairs sperm function. However, whether HBV infection disrupts energy metabolism in SCs remains unclear. This study aimed to determine the role of serum exosomes of HBV-infected patients in SC viability and glycolysis. Serum exosomes were obtained from 30 patients with (HBV+_exo) or without (HBV-_exo) HBV infection using high-speed centrifugation and identified by transmission electron microscopy and western blot analysis. Cell viability is determined by CCK-8 assay. Glycolysis is determined by detecting extracellular acidification rate and ATP levels. miR-122-5p expression levels are detected by quantitative RT-PCR, and a dual-luciferase gene reporter assay confirms the downstream target gene of miR-122-5p. Protein expression is determined by western blot analysis. The results show that HBV+ _exo inhibited cell viability, extracellular acidification rate, and ATP production of SCs. miR-122-5p is highly expressed in HBV+ _exo compared with that in HBV-_exo. Furthermore, HBV+ _exo is efficiently taken up by SCs, whereas miR-122-5p is efficiently transported to SCs. miR-122-5p overexpression downregulates ALDOA expression and inhibits SC viability and glycolysis. However, ALDOA overexpression reverses the effects of miR-122-5p and HBV+ _exo on SC viability and glycolysis. HBV+ _exo may deliver miR-122-5p to target ALDOA and inhibit SC viability and glycolysis, thus providing new therapeutic ideas for treating HBV-associated male infertility.


Asunto(s)
Exosomas , Infertilidad Masculina , MicroARNs , Humanos , Masculino , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Células de Sertoli/metabolismo , Semen/metabolismo , Glucólisis , Infertilidad Masculina/metabolismo , Adenosina Trifosfato/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo
9.
Cancer Innov ; 2(4): 265-282, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38089746

RESUMEN

Background: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Tumor marker (TM) detection can indicate the existence and growth of a tumor and has therefore been used extensively for diagnosing LC. Here, we conducted a bibliometric analysis to examine TM-related publications for LC diagnosis to illustrate the current state and future trends of this field, as well as to identify additional promising TMs with high sensitivity. Methods: Publications regarding TMs in LC diagnosis were downloaded from the Web of Science Core Collection. CiteSpace was applied to perform a bibliometric analysis of journals, cocitation authors, keywords, and references related to this field. VOSviewer was used to generate concise diagrams about countries, institutions, authors, and keywords. Changes in the TM research frontier were analyzed through citation burst detection. Results: A total of 990 studies were analyzed in this work. The collaboration network analysis revealed that the People's Republic of China, Yonsei University, and Molina R were the most productive country, institution, and scholar, respectively. Additionally, Molina R was the author with the most citations. The National Natural Science Foundation of China was the largest funding source. "Carcinoembryonic antigen (CEA) as tumor marker in lung cancer" was the top reference with the most citations, Lung Cancer was the core journal, and "serum tumor marker" experienced a citation burst over the past 5 years. Conclusion: This bibliometric analysis of TMs in LC diagnosis presents the current trends and frontiers in this field. We summarized the research status of this field and the methods to improve the diagnostic efficacy of traditional serum TMs, as well as provided new directions and ideas for improving the LC clinical detection rate. Priority should be given to the transformation of computer-assisted diagnostic technology for clinical applications. In addition, circulating tumor cells, exosomes, and microRNAs were the current most cutting-edge TMs.

10.
Autoimmunity ; 56(1): 2276068, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37909152

RESUMEN

To detect the value of serum interleukin-17 (IL-17), tumour necrosis factor-α (TNF-α), and Dickkopf-1 (DKK-1) in rheumatoid arthritis (RA) at different disease stages. 141 RA patients were randomly obtained and diagnosed in a large tertiary first-class hospital in Jiangxi Province from November 2021 to January 2022. RA was divided into 38 low activity and remission phase (low remission patients), 72 moderate activity patients, 41 high activity patients, according to the disease activity score 28 (DAS28) of RA and 70 healthy controls. IL-17 and TNF-α in serum detected by flow cytometry; DKK-1by ELISA; rheumatoid factor (RF) and C-reactive protein (CRP) by rate scattering turbidimetry; erythrocyte sedimentation rate (ESR) by Widmanstat method; anti-cyclic citrullinated polypeptide antibody (Anti-CCP) by chemiluminescence. The changes among the groups were statistically analysed and evaluated their diagnostic value. ①Anti-CCP, CRP, and ESR levels in the moderate-to-high activity group were higher than controls, while IL-17, TNF-α, and DKK-1levels higher than low remission group, moderate activity group and controls (p < 0.05). ②IL-17, TNF-α and DKK-1 were positively correlated with RA disease activity, with the correlations of IL-17, TNF-α and DKK-1 all over 0.5 (p < 0.05). ③The ROC curve showed that among all indices the AUC of DKK-1 was the largest, 0. 922, and has the highest sensitivity and negative predictive value for RA, 0.965 and 0.953, respectively. The specificity and positive predictive value of TNF-α is highest, 0.918 and 0.921, respectively, combined them had the highest predictive value in moderate-to-high activity RA, with AUC of 0.968, and had the highest sensitivity of 0.965. The IL-17, TNF-α and DKK-1 levels were elevated in RA and positively correlated with disease activity, involved in the Wnt signalling pathway of inflammatory and joint destructive effects, combining them to monitor the RA disease process and biologically treat the cytokines in the pathogenesis of RA were valuable.


Asunto(s)
Artritis Reumatoide , Factor de Necrosis Tumoral alfa , Humanos , Artritis Reumatoide/metabolismo , Proteína C-Reactiva/metabolismo , Citocinas , Interleucina-17 , Factor Reumatoide
11.
Chin Med ; 18(1): 115, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684699

RESUMEN

BACKGROUND: Panax japonicus var. major (PJM) belongs to the well-known ginseng species used in west China for hundreds of years, which has the effects of lung tonifying and yin nourishing, and exerts the analgesic, antitussive, and hemostatic activities. Compared with the other Panax species, the chemical composition and the spatial tissue distribution of the bioactive ginsenosides in PJM have seldom been investigated. METHODS: Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS) and desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) were integrated for the systematic characterization and spatial tissue distribution studies of ginsenosides in the rhizome of PJM. Considering the great difficulty in exposing the minor saponins, apart from the conventional Auto MS/MS (M1), two different precursor ions list-including data-dependent acquisition (PIL-DDA) approaches, involving the direct input of an in-house library containing 579 known ginsenosides (M2) and the inclusion of the target precursors screened from the MS1 data by mass defect filtering (M3), were developed. The in situ spatial distribution of various ginsenosides in PJM was profiled based on DESI-MSI with a mass range of m/z 100-1500 in the negative ion mode, with the imaging data processed by the High Definition Imaging (HDI) software. RESULTS: Under the optimized condition, 272 ginsenosides were identified or tentatively characterized, and 138 thereof were possibly not ever reported from the Panax genus. They were composed by 75 oleanolic acid type, 22 protopanaxadiol type, 52 protopanaxatriol type, 16 octillol type, 19 malonylated, 35 C-17 side-chain varied, and 53 others. In addition, the DESI-MSI experiment unveiled the differentiated distribution of saponins, but the main location in the cork layer and phloem of the rhizome. The abundance of the oleanolic acid ginsenosides was high in the rhizome slice of PJM, which was consistent with the results obtained by UHPLC/QTOF-MS. CONCLUSION: Comprehensive characterization of the ginsenosides in the rhizome of PJM was achieved, with a large amount of unknown structures unveiled primarily. We, for the first time, reported the spatial tissue distribution of different subtypes of ginsenosides in the rhizome slice of PJM. These results can benefit the quality control and further development of PJM and the other ginseng species.

12.
J Chromatogr A ; 1708: 464344, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37703763

RESUMEN

For quality control of Chinese patent medicines (CPMs) containing the same herbal medicine or different herbal medicines that have similar chemical composition, current ″one standard for one species″ research mode leads to poor universality of the analytical approaches unfavorable to discriminate easily confused species. Herein, we were aimed to elaborate a multiple heart-cutting two-dimensional liquid chromatography/charged aerosol detector (MHC-2DLC/CAD) approach to quantitatively assess ginseng from multiple CPMs. Targeting baseline resolution of 16 ginsenosides (noto-R1/Rg1/Re/Rf/Ra2/Rb1/Rc/Ro/Rb2/Rb3/Rd/Rh1/Rg2/Rg3/Rg3(R)/24(R)-p-F11), experiments were conducted to optimize key parameters and validate its performance. A Poroshell 120 EC-C18 column and an XBridge Shield RP18 column were separately utilized in the first-dimensional (1D) and the second-dimensional (2D) chromatography. Eight consecutive cuttings could achieve good separation of 16 ginsenosides within 85 min. The developed MHC-2DLC/CAD method showed good linearity (R2 > 0.999), repeatability (RSD < 6.73%), stability (RSD < 5.63%), inter- and intra-day precision (RSD < 5.57%), recovery (93.76-111.14%), and the limit of detection (LOD) and limit of quantification (LOQ) varied between 0.45-2.37 ng and 0.96-4.71 ng, respectively. We applied it to the content determination of 16 ginsenosides simultaneously from 28 different ginseng-containing CPMs, which unveiled the ginsenoside content difference among the tested CPMs, and gave useful information to discriminate ginseng in the preparation samples, as well. The MHC-2DLC/CAD approach exhibited advantages of high specificity, good separation ability, and relative high analysis efficiency, which also justified the feasibility of our proposed ″Monomethod Characterization of Structure Analogs″ strategy in quality evaluation of diverse CPMs that contained different ginseng.


Asunto(s)
Medicamentos Herbarios Chinos , Ginsenósidos , Panax , Aerosoles , Cromatografía Liquida , Medicamentos sin Prescripción
13.
J Chromatogr A ; 1706: 464243, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37567002

RESUMEN

To accurately identify the metabolites is crucial in a number of research fields, and discovery of new compounds from the natural products can benefit the development of new drugs. However, the preferable phytochemistry or liquid chromatography/mass spectrometry approach is time-/labor-extensive or receives unconvincing identifications. Herein, we presented a strategy, by integrating offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), exclusion list-containing high-definition data-dependent acquisition (HDDDA-EL), and quantitative structure-retention relationship (QSRR) prediction of the retention time (tR), to facilitate the in-depth and more reliable identification of herbal components and thus to discover new compounds more efficiently. Using the saponins in Panax quinquefolius flower (PQF) as a case, high orthogonality (0.79) in separating ginsenosides was enabled by configuring the XBridge Amide and CSH C18 columns. HDDDA-EL could improve the coverage in MS2 acquisition by 2.26 folds compared with HDDDA (2933 VS 1298). Utilizing 106 reference compounds, an accurate QSRR prediction model (R2 = 0.9985 for the training set and R2 = 0.88 for the validation set) was developed based on Gradient Boosting Machine (GBM), by which the predicted tR matching could significantly reduce the isomeric candidates identification for unknown ginsenosides. Isolation and establishment of the structures of two malonylginsenosides by NMR partially verified the practicability of the integral strategy. By these efforts, 421 ginsenosides were identified or tentatively characterized, and 284 thereof were not ever reported from the Panax species. The current strategy is thus powerful in the comprehensive metabolites characterization and rapid discovery of new compounds from the natural products.


Asunto(s)
Productos Biológicos , Ginsenósidos , Panax , Ginsenósidos/análisis , Panax/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida , Flores/química , Productos Biológicos/análisis
14.
J Sep Sci ; 46(19): e2300374, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582648

RESUMEN

A challenge in the quality control of traditional Chinese medicine is the systematic multicomponent characterization of the compound formulae. Jiawei Fangji Huangqi, a modified form of Fangji Huangqi, is a prescription comprising seven herbal medicines. To address the chemical complexity of the Jiawei Fangji Huangqi decoction, we integrated ion mobility-quadrupole time-of-flight high-definition MSE coupled to ultra-high-performance liquid chromatography and intelligent data processing workflows available in the UNIFI software package. Good chromatographic separation was achieved on CORTECS UPLC T3 column within 52 min, and high-accuracy MS2 data were acquired using high-definition MSE in the negative and positive modes. A chemical library of 1250 compounds was created and incorporated into the UNIFI software to enable automatic peak annotation of the high-definition MSE data. We identified or tentatively characterize 430 compounds in the Jiawei Fangji Huangqi decoction. The potential superiority of high-definition MSE over conventional MS data acquisition approaches was revealed in its spectral quality (MS2 ), differentiation of isomers, separation of coeluting compounds, and target mass coverage. The multiple components of the Jiawei Fangji Huangqi decoction were elucidated, offering insight into its improved pharmacological action compared with that of the Fangji Huangqi formula.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Flujo de Trabajo , Espectrometría de Masas/métodos , Medicamentos Herbarios Chinos/análisis , Medicina Tradicional China
15.
J Agric Food Chem ; 71(24): 9391-9403, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294034

RESUMEN

Ginseng extracts are extensively used as raw materials for food supplements and herbal medicines. This study aimed to characterize ginsenosides obtained from six Panax plant extracts (Panax ginseng, red ginseng, Panax quinquefolius, Panax notoginseng, Panax japonicus, and Panax japonicus var. major) and compared them with their in vitro metabolic profiles mediated by rat intestinal microbiota. Ultrahigh-performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) with scheduled multiple reaction monitoring (sMRM) quantitation methods were developed to characterize and compare the ginsenoside composition of the different extracts. After in vitro incubation, 248 ginsenosides/metabolites were identified by UHPLC/IM-QTOF-MS in six biotransformed samples. Deglycosylation was determined to be the main metabolic pathway of ginsenosides, and protopanaxadiol-type and oleanolic acid-type saponins were easier to be easily metabolized. Compared with the ginsenosides in plant extracts, those remaining in six biotransformed samples were considerably fewer after biotransformation for 8 h. However, the compositional differences in four subtypes of the ginsenosides among the six Panax plants became more distinct.


Asunto(s)
Microbioma Gastrointestinal , Ginsenósidos , Panax notoginseng , Ratas , Animales , Ginsenósidos/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida , Panax notoginseng/química , Extractos Vegetales/química
16.
J Chromatogr A ; 1700: 464042, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37163941

RESUMEN

One bottleneck problem in the quality control of traditional Chinese medicine (TCM) is the accurate identification of easily confused herbal medicines from Chinese patent medicine (CPM). Ginseng products derived from the multiple parts (e.g., root/rhizome, leaf, and flower bud) of multiple Panax species (P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major) are globally popular; however, their authentication is very challenging. Using online comprehensive two-dimensional liquid chromatography (LC × LC), we propose the concept of a three-dimensional characteristic chromatogram (3D CC) by integrating enhanced LC × LC separation and a contour plot that visualizes the stereoscopic chromatographic peaks and examine its performance in authenticating various ginseng products. Targeted at the resolution of 17 ginsenoside markers, an online LC × LC/UV system with a 56 min analysis time was constructed: a CORTECS UPLC Shield RP 18 column running at 0.1 mL/min for the first-dimensional chromatography and a Poroshell SB-Aq column at 2.0 mL/min in shift gradient mode in the second dimension of separation. In particular, ginsenosides Rg1/Re and Rc/Ra1 were well resolved. According to the presence/absence of stereo peaks consistent with the main ginsenoside markers in the 3D CC and the depth of shade (depending on peak volume), it was feasible to use a single method to identify and distinguish among 12 different ginseng species as the drug materials and the use of ginseng simultaneously from 21 CPMs. Conclusively, a practical solution enabling the accurate identification of easily confused TCMs was provided, covering both the drug materials and the compound preparations.


Asunto(s)
Medicamentos Herbarios Chinos , Ginsenósidos , Panax , Plantas Medicinales , Panax/química , Ginsenósidos/análisis , Medicamentos sin Prescripción , Cromatografía Líquida de Alta Presión/métodos , Plantas Medicinales/química , Medicamentos Herbarios Chinos/química
17.
Molecules ; 28(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241791

RESUMEN

Ion mobility-mass spectrometry (IM-MS) is a powerful separation technique providing an additional dimension of separation to support the enhanced separation and characterization of complex components from the tissue metabolome and medicinal herbs. The integration of machine learning (ML) with IM-MS can overcome the barrier to the lack of reference standards, promoting the creation of a large number of proprietary collision cross section (CCS) databases, which help to achieve the rapid, comprehensive, and accurate characterization of the contained chemical components. In this review, advances in CCS prediction using ML in the past 2 decades are summarized. The advantages of ion mobility-mass spectrometers and the commercially available ion mobility technologies with different principles (e.g., time dispersive, confinement and selective release, and space dispersive) are introduced and compared. The general procedures involved in CCS prediction based on ML (acquisition and optimization of the independent and dependent variables, model construction and evaluation, etc.) are highlighted. In addition, quantum chemistry, molecular dynamics, and CCS theoretical calculations are also described. Finally, the applications of CCS prediction in metabolomics, natural products, foods, and the other research fields are reflected.


Asunto(s)
Metaboloma , Metabolómica , Metabolómica/métodos , Espectrometría de Masas/métodos , Bases de Datos Factuales , Aprendizaje Automático
18.
Adv Mater ; 35(22): e2211738, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36942383

RESUMEN

Gate controllability is a key factor that determines the performance of GaN high electron mobility transistors (HEMTs). However, at the traditional metal-GaN interface, direct chemical interaction between metal and GaN can result in fixed charges and traps, which can significantly deteriorate the gate controllability. In this study, Ti3 C2 Tx MXene films are integrated into GaN HEMTs as the gate contact, wherein van der Waals heterojunctions are formed between MXene films and GaN without direct chemical bonding. The GaN HEMTs with enhanced gate controllability exhibit an extremely low off-state current (IOFF ) of 10-7 mA mm-1 , a record high ION /IOFF current ratio of ≈1013 (which is six orders of magnitude higher than conventional Ni/Au contact), a high off-state drain breakdown voltage of 1085 V, and a near-ideal subthreshold swing of 61 mV dec-1 . This work shows the great potential of MXene films as gate electrodes in wide-bandgap semiconductor devices.

19.
J Fungi (Basel) ; 9(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36836339

RESUMEN

(1) Background: The Hypsizygus marmoreus is a popular edible mushroom in East Asian markets. In a previous study, we reported the proteomic analyses of different developmental stages of H. marmoreus, from primordium to mature fruiting body. However, the growth and protein expression changes from scratching to primordium are unclear. (2) Methods: A label-free LC-MS/MS quantitative proteomic analysis technique was adopted to obtain the protein expression profiles of three groups of samples collected in different growth stages from scratching to the tenth day after scratching. The Pearson's correlation coefficient analysis and principal component analysis were performed to reveal the correlation among samples. The differentially expressed proteins (DEPs) were organized. Gene Ontology (GO) analysis was performed to divide the DEPs into different metabolic processes and pathways. (3) Results: From the 3rd day to the 10th day after scratching, mycelium recovered gradually and formed primordia. Compared with the Rec stage, 218 highly expressed proteins were identified in the Knot stage. Compared with the Pri stage, 217 highly expressed proteins were identified in the Rec stage. Compared with the Pri stage, 53 highly expressed proteins were identified in the Knot stage. A variety of the same highly expressed proteins were identified in these three developmental stages, including: glutathione S-transferase, acetyltransferase, importin, dehydrogenase, heat-shock proteins, ribosomal proteins, methyltransferase, etc. The key pathways in the development of H. marmoreus are metabolic process, catabolic process, oxidoreductase activity and hydrolase activity. DEPs in the Knot or Pri stages compared with the Rec stage were significantly decreased in the metabolic-, catabolic- and carbohydrate-related process; and the oxidoreductase, peptidase, and hydrolase activity, which can serve as targets for selectable molecular breeding in H. marmoreus. A total of 2000 proteins were classified into eight different modules by WGCNA, wherein 490 proteins were classified into the turquoise module. (4) Conclusions: Generally, from the 3rd day to the 10th day after scratching, mycelium recovered gradually and formed primordia. Importin, dehydrogenase, heat-shock proteins, ribosomal proteins, transferases were all highly expressed in these three developmental stages. DEPs in the Rec stage compared with the Knot or Pri stages were significantly enriched in the metabolic-, catabolic- and carbohydrate-related process; and in oxidoreductase, peptidase and hydrolase activities. This research contributes to the understanding of the mechanisms of the development changes before primordium of H. marmoreus.

20.
Exp Biol Med (Maywood) ; 248(3): 201-208, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36598065

RESUMEN

This study set out to investigate the clinical significance of serum tumor necrosis factor receptor-associated protein 1 (TRAP1) in diagnosing small cell lung cancer (SCLC) with different clinical stages, and to compare the diagnostic efficiency with neuron-specific enolase (NSE), carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). Besides, to analyze the role of serum TRAP1 in tumor immunity. A total of 91 patients with SCLC, 99 patients with non-small cell lung cancer (NSCLC), 102 patients with pulmonary nodules (PN), and 75 healthy people were included. The concentrations of serum TRAP1 was detected by enzyme-linked immunosorbent assay (ELISA). NSE, CEA, and CA19-9 were detected by chemiluminescence. The results showed that level of TRAP1 in Group SCLC was lower than other three groups (P < 0.01), whereas NSE in SCLC was significantly higher than the others (P < 0.01), and the levels of CEA and CA19-9 were higher than healthy people and PN patients (P < 0.01). There was a significant difference in TRAP1 levels between patients with limited-stage disease SCLC (LD-SCLC) and extensive-stage disease SCLC (ED-SCLC) (P < 0.0001). The sensitivity and specificity of TRAP1 in diagnosing LD-SCLC were 0.964 and 0.560, respectively, and the area under the curve (AUC) was 0.819. The sensitivity and specificity in diagnosing ED-SCLC were 0.810 and 0.868, respectively, and the AUC was 0.933, which showed high diagnostic value. The AUC of these two groups can be increased to 0.946 and 0.947 in combination of four biomarkers, effectively improving the diagnosis rate of SCLC. Our findings have revealed that serum TRAP1 has high diagnostic value for SCLC and high diagnostic sensitivity for LD-SCLC. It is a potential biomarker for SCLC. Combined detection can effectively improve the diagnosis rate of SCLC. TRAP1 may be secreted into the circulation by mature immune cells and participates in tumor immunity as a carrier of tumor antigens.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígeno Carcinoembrionario , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Antígeno CA-19-9 , Biomarcadores de Tumor/análisis , Proteínas HSP90 de Choque Térmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA