RESUMEN
In this study, we amplified the capabilities of laser-induced graphene (LIG) by developing a multi-doped LIG extended-gated field-effect transistor (EG-FET) sensor. This sensor integrates a multi-doped LIG EG electrode array as a disposable sensing component with a standard MOSFET for reusable transduction. The multi-doped LIG was synthesized using a dual-approach: initially, by using a MnCl2-doped polyimide (MnCl2-PI) film through precursor compounding, and subsequently, by employing a CO2 laser to respectively in situ generate MnO2 nanoparticles and gold nanoparticles (Au NPs) via direct laser conversion. By incorporating the resultant multi-doped LIG (Au NPs/MnO2/LIG) as the EG electrode, we boosted its electrical efficiency and provided ideal sites for the papain immobilization. This facilitated the selective binding of protein complexes with cystatin C (Cys C), allowing for precise measurement. Notably, the sensor exhibited a robust linear correlation across a concentration range from 50 ag/µL to 0.25 ng/µL and achieved a detection limit of 50 ag/µL. These advancements not only address traditional limitations of LIG applications but also highlight the potential of LIG-based EG-FET portable devices for accurate and early screening of chronic kidney disease (CKD).
RESUMEN
The risk of occupational exposure to organic solvents varies across industries due to factors such as processing materials, ventilation conditions, and exposure duration. Given the dynamic nature of organic solvent use and occupational exposures, continuous monitoring and analysis are essential for identifying high-risk hazards and developing targeted prevention strategies. Therefore, this study aims to analyze the use of organic solvents and volatile organic compounds (VOCs) in different industries in Bao'an District, Shenzhen, China, from 2018 to 2023, to understand their temporal variation and industry-specific differences and to identify high-risk occupational hazards. This study includes 1335 organic solvent samples, used by 414 different industry enterprises, and 1554 air samples. The result shows that the usage of organic solvents in various industries decreased with the outbreak of the pandemic and, conversely, increased as the situation improved. The most frequently detected volatile components in organic solvents were alkanes, followed by aromatic hydrocarbons. The ratios of the detection frequency of VOCs to the total number of detected categories increased year by year after 2020, indicating a tendency towards reduction and concentration of the types of organic solvents used in industrial production. Among the 8 high-risk VOCs, toluene (22.5%), n-hexane (22.0%), xylene (16.1%), and ethylbenzene (15.3%) have relatively high detection rates, suggesting that they need to be focused on in occupational health. Through air samples, the results show that trichloroethylene and xylene pose a high risk to human health (HQ > 1). We recommend that industry should strengthen monitoring of these two VOCs.
RESUMEN
The extensive use of neonicotinoids (NEOs) in agricultural production has led to their pervasive presence in various environmental matrices, including human samples. Given the central role of fruits and vegetables in daily human diets, it is crucial to evaluate the levels of NEOs residues and their potential health risks. In this study, 3104 vegetable samples and 1567 fruit samples from the Shenzhen city were analyzed. Using the relative potency factor (RPF) method, the residue levels of six representative neonicotinoids, including imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM), dinotefuran (DIN), clothianidin (CLO), thiacloprid (THI), were systematically evaluated. The estimated daily intake (EDI), hazard quotient (HQ), and hazard index (HI) for both children and adults were calculated to gauge the prevalence and potential health risks of NEOs in fruits and vegetables. Acetamiprid (ACE) was the most frequently detected NEO in vegetables (69.4%) and fruits (73.9%), making it the predominant contributor to total residues. Further analyses indicated notably higher levels of imidacloprid-equivalent total neonicotinoids (IMIRPF) in root and tuber vegetables (3025 µg/kg) and other fruits (243 µg/kg). A significant strong positive correlation (r = 0.748, P < 0.05) was observed between thiamethoxam (THM) and clothianidin (CLO), possibly due to their shared metabolic pathways. Although the mean HI values for adults and children from daily fruit (adults: 0.02, children: 0.01) and vegetable (adults: 0.02, children: 0.03) intake were generally below safety thresholds, some maximum HI values exceeded these limits, indicating that the potential health risks associated with NEOs exposure should not be overlooked.
Asunto(s)
Frutas , Neonicotinoides , Residuos de Plaguicidas , Verduras , Neonicotinoides/análisis , Humanos , Verduras/química , Frutas/química , Residuos de Plaguicidas/análisis , China , Medición de Riesgo , Nitrocompuestos/análisis , Guanidinas/análisis , Insecticidas/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Tiametoxam/análisis , Contaminación de Alimentos/análisis , Monitoreo del Ambiente , Tiazinas , TiazolesRESUMEN
Background & Aims: Currently, there is limited knowledge on the clinical profile of drug-induced liver injury (DILI) in Chinese children. We aimed to assess the clinical characteristics, suspected drugs, and outcomes associated with pediatric DILI in China. Methods: This nationwide, multicenter, retrospective study, conducted between 2012 and 2014, analyzed 25,927 cases of suspected DILI at 308 medical centers using the inpatient medical register system. Utilizing the Roussel Uclaf causality assessment method score, only patients with scores ≥6 or diagnosed with DILI by three experts after scoring <6 were included in the analysis. Among them, 460 cases met the EASL biochemical criteria. The study categorized children into three age groups: toddlers (≥30 days to <6 years old), school-age children (6 to <12 years old), and adolescents (12 to <18 years old). Results: Hepatocellular injury was the predominant clinical classification, accounting for 63% of cases, with 34% of these cases meeting Hy's law criteria. Adolescents comprised the majority of children with moderate/severe DILI (65%). Similarly, adolescents faced a significantly higher risk of severe liver injury compared to younger children (adjusted odd ratios 4.75, p = 0.002). The top three most frequently prescribed drug classes across all age groups were antineoplastic agents (25.9%), antimicrobials (21.5%), and traditional Chinese medicine (13.7%). For adolescents, the most commonly suspected drugs were antitubercular drugs (22%) and traditional Chinese medicine (23%). Conclusion: Adolescents are at a greater risk of severe and potentially fatal liver injury compared to younger children. Recognizing the risk of pediatric DILI is crucial for ensuring safe medical practices. Impact and implications: Drug-induced liver injury, a poorly understood yet serious cause of pediatric liver disease, encompasses a spectrum of clinical presentations, ranging from asymptomatic liver enzyme elevation to acute liver failure. This retrospective study, utilizing a large Chinese cohort of pediatric liver injury cases from 308 centers nationwide, characterized the major clinical patterns and suspected drugs in detail, revealing that adolescents are at a greater risk of severe liver injury compared to younger children. Vigilant care and careful surveillance of at-risk pediatric patients are crucial for physicians, researchers, patients, caregivers, and policymakers. Additional multicenter prospective studies are needed to evaluate the risk of hepatotoxicity in outpatients and hospitalized pediatric patients.
RESUMEN
Dyslipidemia is a prevalent metabolic disorder in older adults and has negative effects on cardiovascular health. However, the combined effect of paraben, bisphenol A (BPA), and triclosan (TCS) exposure on dyslipidemia and the underlying mechanisms remain unclear. This cross-sectional study recruited 486 individuals ≥60 years in Shenzhen, China. Morning spot urine samples were collected and analyzed for four parabens, BPA, TCS, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), a typical biomarker for oxidative stress, using mass spectrometry. Blood samples were tested for lipid levels using an automated biochemical analyzer. Quantile-based g-computation (QGC) was used to assess the combined effects of exposures on dyslipidemia. Mediation analysis was applied to investigate the mediating role of 8-OHdG between exposure and dyslipidemia. QGC showed that co-exposure to parabens, BPA, and TCS was positively linked with hypercholesterolemia (OR: 1.17, 95%CI: 1.10-1.24, P<0.001) and hyper-LDL-cholesterolemia (OR: 1.35, 95%CI: 1.05-1.75, P=0.019). Methylparaben (MeP), n-propyl paraben (PrP), and butylparaben (BtP) were the major contributors. 8-OHdG mediated 6.5% and 13.0% of the overall effect of the examined chemicals on hypercholesterolemia and hyper-LDL-cholesterolemia, respectively (all P<0.05). Our study indicated that co-exposure to parabens, BPA, and TCS is associated with dyslipidemia and oxidative stress partially mediate the association. Future research is needed to explore additional mechanisms underlying these relationships.
RESUMEN
Catalytic peroxymonosulfate (PMS) activation processes don't solely rely on electron transfer from dominant metal centers due to the complicated composition and interface environment of catalysts. Herein the synthesis of a cobalt based metal-organic framework containing polyvanadate [V4O12]4- cluster, Co2(V4O12)(bpy)2 (bpy = 4,4'-bipyridine), is presented. The catalyst demonstrates superior degradation activity toward various micropollutants, with higher highest occupied molecular orbital (HOMO), via nonradical attack. The X-ray absorption spectroscopy and density functional theory (DFT) calculations demonstrate that Co sites act as both PMS trapper and electron donor. In situ spectral characterizations and DFT calculations reveal that the terminal oxygen atoms in the [V4O12]4- electron sponge could interact with the terminal hydrogen atoms in PMS to form hydrogen bonds, promoting the generation of SO5* intermediate via both dynamic pull and direct electron transfer process. Further, Co2(V4O12)(bpy)2 exhibits long-term water purification ability, up to 40 h, towards actual wastewater discharged from an ofloxacin production factory. This work not only presents an efficient catalyst with an electron sponge for water environmental remediation via nonradical pathway, but also provides fundamental insights into the Fenton-like reaction mechanism.
RESUMEN
The extensive utilization of per- and polyfluoroalkyl substances (PFASs) has led to their pervasive presence in the environment, resulting in contamination of aquatic products. Prolonged exposure to PFASs has been linked to direct hepatic and renal damage, along with the induction of oxidative stress, contributing to a spectrum of chronic ailments. Despite the recent surge in popularity of red swamp crayfish as a culinary delicacy in China, studies addressing PFASs' exposure and associated health risks from their consumption remain scarce. To address this gap, our study investigated the PFASs' content in 85 paired edible tissue samples sourced from the five primary red swamp crayfish breeding provinces in China. The health risks associated with dietary exposure were also assessed. Our findings revealed widespread detection of PFASs in crayfish samples, with short-chain perfluoroalkyl carboxylic acids (PFCAs) exhibiting the highest concentrations. Notably, the total PFAS concentration in the hepatopancreas (median: 160 ng/g) significantly exceeded that in muscle tissue (5.95 ng/g), as did the concentration of every single substance. The hazard quotient of perfluorohexanesulfonic acid (PFHxS) via consuming crayfish during peak season exceeded 1. In this case, a potential total non-cancer health risk of PFASs, which is mainly from the hepatopancreas and associated with PFHxS, is also observed (hazard index>1). Thus, it is recommended to avoid consuming the hepatopancreas of red swamp crayfish. Greater attention should be paid to governance technology innovation and regulatory measure strengthening for short-chain PFASs.
Asunto(s)
Astacoidea , Fluorocarburos , Contaminantes Químicos del Agua , Animales , China , Medición de Riesgo , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Humanos , Contaminación de Alimentos/análisis , Monitoreo del Ambiente/métodos , Ácidos Alcanesulfónicos/análisis , Exposición Dietética/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Hepatopáncreas/química , Pueblos del Este de AsiaRESUMEN
Due to the unique and excellent optical performance and promising prospect for various photonics applications, cavity-enhanced superfluorescence (CESF) in perovskite quantum dot assembled superstructures has garnered wide attention. However, the stringent requirements and high threshold for achieving CESF limit its further development and application. The high threshold of CESF in quantum dot superstructures is mainly attributed to the low radiation recombination rate of the quantum dot and the unsatisfactory light field limiting the ability of the assembled superstructures originating from low controllability of self-assembly. Herein, we propose a strategy to reduce the threshold of CESF in quantum dot superstructure microcavities from two aspects: facet engineering optimization of quantum dot blocks and controllability improvement of the assembly method. We introduce dodecahedral quantum dots with lower nonradiative recombination, substituting frequently used cubic quantum dots as assembly blocks. Besides, we adopt the micro-emulsion droplet assembly method to obtain spherical perovskite quantum dot superparticles with high packing factors and orderly internal arrangements, which are more controllable and efficient than the conventional solvent-drying methods. Based on the dodecahedral quantum dot superparticles, we realized low-threshold CESF (Pth = 15.6 µJ cm-2). Our work provides a practical and scalable avenue for realizing low threshold CESF in quantum dot assembled superstructure systems.
RESUMEN
MCPH1 has been identified as the causal gene for primary microcephaly type 1, a neurodevelopmental disorder characterized by reduced brain size and delayed growth. As a multifunction protein, MCPH1 has been reported to repress the expression of TERT and interact with transcriptional regulator E2F1. However, it remains unclear whether MCPH1 regulates brain development through its transcriptional regulation function. This study showed that the knockout of Mcph1 in mice leads to delayed growth as early as the embryo stage E11.5. Transcriptome analysis (RNA-seq) revealed that the deletion of Mcph1 resulted in changes in the expression levels of a limited number of genes. Although the expression of some of E2F1 targets, such as Satb2 and Cdkn1c, was affected, the differentially expressed genes (DEGs) were not significantly enriched as E2F1 target genes. Further investigations showed that primary and immortalized Mcph1 knockout mouse embryonic fibroblasts (MEFs) exhibited cell cycle arrest and cellular senescence phenotype. Interestingly, the upregulation of p19ARF was detected in Mcph1 knockout MEFs, and silencing p19Arf restored the cell cycle and growth arrest to wild-type levels. Our findings suggested it is unlikely that MCPH1 regulates neurodevelopment through E2F1-mediated transcriptional regulation, and p19ARF-dependent cell cycle arrest and cellular senescence may contribute to the developmental abnormalities observed in primary microcephaly.
Asunto(s)
Puntos de Control del Ciclo Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Microcefalia , Animales , Ratones , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Fibroblastos/metabolismo , Ratones Noqueados , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologíaRESUMEN
Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity in vitro. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms in vivo, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms in vivo. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.
Asunto(s)
Inmunidad Innata , Macrófagos , Células Madre Pluripotentes , Receptores Quiméricos de Antígenos , Humanos , Macrófagos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Animales , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/inmunología , Células Madre Pluripotentes/metabolismo , Ratones , Diferenciación Celular , Interferón gamma/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patologíaRESUMEN
Bisphenol analogs (BPs) are extensively employed in commercial and industrial products and they have been found in a variety of environmental matrices and human samples. The red swamp crayfish (Procambarus clarkii) has been a trendy food in China in recent decades. However, the levels of BPs in Chinese crayfish and the associated hazards of human exposure remain unknown. Thus, in this study, the levels of eight BPs in crayfish gathered from five major provinces engaged in crayfish within the Yangtze River Basin were analyzed. Additionally, the health risks for humans by ingesting crayfish were calculated. BPs were frequently detected in crayfish tissues, indicating the wide occurrence of these chemicals. In comparison to other substitutions, BPA remains the dominant bisphenol analog. Most of the BPs were observed to accumulate in the hepatopancreas compared to the muscle, so consuming the hepatopancreas of crayfish is not recommended. With the exception of BPS, the Estimated Daily Intakes (EDIs) of the remaining BPs exceeded the Tolerable Daily Intake (TDI) specified by the European Food Safety Authority (EFSA) by a factor of 1.75-69.0. The mean hazard index (HI) values exceeded 1 for both hepatopancreas and muscle in all provinces, and the mean HI values for hepatopancreas were significantly higher than those for muscle, indicating potential health risks for local consumers.
Asunto(s)
Astacoidea , Compuestos de Bencidrilo , Fenoles , Contaminantes Químicos del Agua , Animales , Fenoles/análisis , China , Contaminantes Químicos del Agua/análisis , Compuestos de Bencidrilo/análisis , Humanos , Medición de Riesgo , Hepatopáncreas/química , Monitoreo del Ambiente , Contaminación de Alimentos/análisisRESUMEN
Phase-to-height mapping is one of the important processes in three dimensional phase measurement profilometry. But, in traditional phase-to-height mapping method, the measurement accuracy is affected by device attitude, so it needs saving a large amount of mapping equations to achieve high-quality phase-to-height mapping. In order to improve that, this paper proposes an improved phase-to-height mapping method combine with device attitude. Firstly, we get the unwrapped phase of the target. Then, using generalized regression neural network is used to reduce the offset of phase information at the same height due to the randomness of device attitude. Last, the phase-to-height mapping is completed by substituting the unwrapped phase (the difference between having detected object and no detected object) of eliminate the offset into improved phase-to-height mapping method. Experimental results show that the proposed method could achieve high-quality phase-to-height mapping with less mapping equation and less memory space. Compared with the nonlinear phase-to-height mapping method (probabilistic neural network to eliminate phase offset), its accuracy is improved by 44.30%. Compared with the nonlinear phase-to-height mapping method (radial basis function neural network to eliminate phase offset), the accuracy is improved by 39.58%.
RESUMEN
Despite considerable advances in artificial bone tissues, the absence of neural network reconstruction in their design often leads to delayed or ineffective bone healing. Hence, we propose a multilayer hierarchical lithium (Li)-doped titanium dioxide structure, constructed through microarc oxidation combined with alkaline heat treatment. This structure can induce the sustained release of Li ions, mimicking the environment of neurogenic osteogenesis characterized by high brain-derived neurotrophic factor (BDNF) expression. During in vitro experiments, the structure enhanced the differentiation of Schwann cells (SCs) and the growth of human umbilical vein endothelial cells (HUVECs) and mouse embryo osteoblast progenitor cells (MC3T3-E1). Additionally, in a coculture system, the SC-conditioned media markedly increased alkaline phosphatase expression and the formation of calcium nodules, demonstrating the excellent potential of the material for nerve-induced bone regeneration. In an in vivo experiment based on a rat distal femoral lesion model, the structure substantially enhanced bone healing by increasing the density of the neural network in the tissue around the implant. In conclusion, this study elucidates the neuromodulatory pathways involved in bone regeneration, providing a promising method for addressing bone deformities.
RESUMEN
Legged robots have shown great adaptability to various environments. However, conventional walking gaits are insufficient to meet the motion requirements of robots. Therefore, achieving high-speed running for legged robots has become a significant research topic. In this paper, based on the Spring-Loaded Inverted Pendulum (SLIP) model and the optimized Double leg-Spring-Loaded Inverted Pendulum (D-SLIP) model, the running control strategies for the double flying phase Bound gait and the Rotatory gallop gait of quadruped robots are designed. First, the dynamics of the double flying phase Bound gait and Rotatory gallop gait are analyzed. Then, based on the "three-way" control idea of the SLIP model, the running control strategy for the double flying phase Bound gait is designed. Subsequently, the SLIP model is optimized to derive the D-SLIP model with two touchdown legs, and its dynamic characteristics are analyzed. And the D-SLIP model is applied to the running control strategy of the Rotatory gallop gait. Furthermore, joint simulation verification is conducted using Adams virtual prototyping and MATLAB/Simulink control systems for the designed control strategies. Finally, experimental verification is performed for the double flying phase Bound gait running control strategy. The experimental results demonstrate that the quadruped robot can achieve high-speed and stable running.
RESUMEN
The cerebral cortex is a pivotal structure integral to advanced brain functions within the mammalian central nervous system. DNA methylation and hydroxymethylation play important roles in regulating cerebral cortex development. However, it remains unclear whether abnormal cerebral cortex development, such as microcephaly, could rescale the epigenetic landscape, potentially contributing to dysregulated gene expression during brain development. In this study, we characterize and compare the DNA methylome/hydroxymethylome and transcriptome profiles of the cerebral cortex across several developmental stages in wild-type (WT) mice and Mcph1 knockout (Mcph1-del) mice with severe microcephaly. Intriguingly, we discover a global reduction of 5'-hydroxymethylcytosine (5hmC) level, primarily in TET1-binding regions, in Mcph1-del mice compared to WT mice during juvenile and adult stages. Notably, genes exhibiting diminished 5hmC levels and concurrently decreased expression are essential for neurodevelopment and brain functions. Additionally, genes displaying a delayed accumulation of 5hmC in Mcph1-del mice are significantly associated with the establishment and maintenance of the nervous system during the adult stage. These findings reveal that aberrant cerebral cortex development in the early stages profoundly alters the epigenetic regulation program, which provides unique insights into the molecular mechanisms underpinning diseases related to cerebral cortex development.
RESUMEN
Cutaneous squamous cell carcinoma (cSCC) is the second most frequent of the keratinocyte-derived malignancies with actinic keratosis (AK) as a precancerous lesion. To comprehensively delineate the underlying mechanisms for the whole progression from normal skin to AK to invasive cSCC, we performed single-cell RNA sequencing (scRNA-seq) to acquire the transcriptomes of 138,982 cells from 13 samples of six patients including AK, squamous cell carcinoma in situ (SCCIS), cSCC, and their matched normal tissues, covering comprehensive clinical courses of cSCC. We identified diverse cell types, including important subtypes with different gene expression profiles and functions in major keratinocytes. In SCCIS, we discovered the malignant subtypes of basal cells with differential proliferative and migration potential. Differentially expressed genes (DEGs) analysis screened out multiple key driver genes including transcription factors along AK to cSCC progression. Immunohistochemistry (IHC)/immunofluorescence (IF) experiments and single-cell ATAC sequencing (scATAC-seq) data verified the expression changes of these genes. The functional experiments confirmed the important roles of these genes in regulating cell proliferation, apoptosis, migration, and invasion in cSCC tumor. Furthermore, we comprehensively described the tumor microenvironment (TME) landscape and potential keratinocyte-TME crosstalk in cSCC providing theoretical basis for immunotherapy. Together, our findings provide a valuable resource for deciphering the progression from AK to cSCC and identifying potential targets for anticancer treatment of cSCC.
Asunto(s)
Carcinoma de Células Escamosas , Queratosis Actínica , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/metabolismo , Queratosis Actínica/genética , Queratosis Actínica/metabolismo , Queratosis Actínica/patología , Neoplasias Cutáneas/patología , Queratinocitos/metabolismo , Transcriptoma , Microambiente Tumoral/genéticaRESUMEN
The accumulation of antibiotics in the environment can be harmful to human health, and research on their disposal technologies is of increasing interest. In this study, WO3/α-Fe2O3/zeolite (WFZ) type II heterojunction composites with core-shell structures were prepared by coupling WO3 semiconductors with visible-light photocatalytic activity with α-Fe2O3 via hydrothermal synthesis using zeolite as a carrier for the adsorption of synergistic photocatalytic degradation of antibiotics in wastewater. X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), specific surface, and porosity measurements were used to characterize the structure of WFZ type II heterojunction. The performance of WFZ heterojunction for the visible photocatalytic degradation of antibiotics (tetracycline hydrochloride (TCH), ciprofloxacin (CIP), and levofloxacin hydrochloride (LVF)) was investigated. Through four photocatalytic cycles, the catalyst exhibited excellent durability and stability. This was attributed to the core-shell structure and type II heterojunction promoting the effective separation of photogenerated carriers and the extended visible light response range, which resulted in the best photocatalytic activity of the catalyst under visible light irradiation. Radical trapping experiments showed that superoxide radicals (â¢O2-) and hydroxyl radical (â¢OH) were the main active species that played a major role in the photocatalytic degradation. These findings show that the synthesized WFZ type-II heterojunction can be used as a reliable visible-light-responsive photocatalyst for the treatment of antibiotics in wastewater.
Asunto(s)
Antibacterianos , Zeolitas , Humanos , Aguas Residuales , Tetraciclina , Ciprofloxacina , Luz , CatálisisRESUMEN
Allelopathy has been demonstrated to be an environmentally friendly way to control harmful algal blooms. Allelochemicals of submerged plants have attracted extensive research due to their bioavailability. The dose-response of submerged plant extracts on algae growth is worth further study to improve the efficiency of bioremediation. In this study, the ultrasonic-enzymatic assistance method was utilized to extract allelochemicals from Ceratophyllum, Myriophyllum spicatum, and Vallisneria. The effects of low-dosage and high-dosage extracts on the growth of Microcystis aeruginosa were compared based on cell biomass and morphology, photosynthetic parameters, reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels. The results showed that the three submerged plant extracts exhibited hormetic effects at low dosages and inhibitory effects at high dosages on algal growth. Within 48 h of cultivation, the enzymatic activities of Microcystis aeruginosa fluctuated, suggesting that the extracts of the three submerged plants induced different oxidative reactions. After 120 h of cultivation with high-dosage extracts, the physiological and biochemical reactions of Microcystis aeruginosa significantly decreased, indicating the effectiveness of the allelopathy of Ceratophyllum, Myriophyllum spicatum, and Vallisneria extracts in controlling algal blooms. The phenomenon of hormesis and inhibition effect confirmed a significant dose-response relationship between the allelochemicals of submerged plant extracts and Microcystis aeruginosa, which could be attributed to the composition and content of allelochemicals. These findings highlight the importance of the relative concentration of the biological algaecide and will benefit other researchers in determining the safe dosage of plant allelochemicals when used in water.
Asunto(s)
Microcystis , Hormesis , Plantas , Extractos Vegetales/farmacología , Floraciones de Algas Nocivas , Feromonas/farmacologíaRESUMEN
The rapid spread and remarkable mutations of SARS-CoV-2 variants, particularly Omicron, necessitate an understanding of their evolutionary characteristics. In this study, we analyzed representative high-quality whole-genome sequences of 2008 SARS-CoV-2 variants to explore long-term dynamic changes in genomic base (especially GC) content and variations during viral evolution. Our results demonstrated a highly negative correlation between GC content and variant emergence time (r = -0.765, p < 2.22e-16). Major gene partitions (S, N, ORF1ab) displayed similar trends. Omicron exhibited a significantly lower GC content than non-Omicron variants (p < 2.22e-16). Notably, we observed a robust negative correlation between C and T content (r = -0.778, p < 2.22e-16) and between G and A content (r = -0.773, p < 2.22e-16). Among all strains, Omicron showed the greatest base variation, with C->T mutations being the most frequent (median [interquartile range [IQR]]: 29 (27, 31), 37.67%), succeeded by G->A mutations (11 (9, 13), 14.63%). Over a 3-year span, an annual decline rate of 0.12% in SARS-CoV-2 GC content was observed and could become more pronounced in future emerging variants. These findings provided insights into the evolutionary trajectory of SARS-CoV-2, underscoring the significance of continuous genomic surveillance for effective prediction of and response to future variants.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Genómica , MutaciónRESUMEN
Non-alkaline zinc-air batteries (ZABs) that use reversible O2 /ZnO2 chemistry exhibit excellent stability and superior reversibility compared to conventional alkaline ZABs. Unlike alkaline ZABs, ZnO2 discharge products are generated on the surface of the air cathodes in non-alkaline ZABs, requiring more gas-liquid-solid three-phase reaction interfaces. However, the kinetics of reported ZABs based on carbon black (CB) is far from satisfactory due to the insufficient reaction areas. The rational structural design of the air cathode is an effective way to increase active surfaces to further enhance the performance of non-alkaline ZABs. In this study, multi-walled carbon nanotubes (MW-CNTs) with unique mesoporous structures and high pore volumes are selected to replace CB in the air cathode preparation. Due to the larger electrochemically active surface area, superior hydrophobicity, and uniform electroconductibility of MW-CNTs-based cathodes, primary ZABs exhibit high specific capacity (704 mAh gZn-1 ) with a Zn utilization ratio of 85.85% at 1.0 mA cm-2 , excellent discharge rate performance, and negligible self-discharge. Furthermore, rechargeable ZABs also demonstrate outstanding rate capability and excellent cycling stability at various current densities. This work provides a fundamental understanding of the criteria for the cathode design of non-alkaline ZABs, thus opening a new pathway for more sustainable ZABs.