Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Psychogeriatrics ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987229

RESUMEN

BACKGROUND: Numerous studies have investigated the potential effects of transcranial direct current stimulation (tDCS) on improving symptoms related to Alzheimer's disease (AD). However, these studies have produced inconsistent results, leading to a need for further investigation. METHODS: A comprehensive search was conducted, including articles published from the initial availability date to 5 April 2024. The extracted study data were analyzed using STATA 12.0 software. The standard mean difference (SMD) and a 95% confidence interval (CI) were calculated to assess the effects of tDCS. RESULTS: A total of 18 studies assessing the effects of tDCS on AD were included in the study. The study revealed that tDCS has an immediate positive impact on general cognitive, executive, language, and visuospatial function. However, the study did not observe any other significant effect of tDCS treatment on improvements in brain function, including long-term effects on general cognitive, attention, language, and memory function, as well as immediate effects on attention and memory function. CONCLUSIONS: In conclusion, the study suggests that tDCS may be a promising intervention for improving the cognitive function of patients with AD. However, given the complex and multifactorial nature of AD, further well-designed studies with larger sample sizes are necessary to clarify the effectiveness of tDCS and determine the optimal combination of tDCS parameters.

2.
Int J Biol Macromol ; 274(Pt 1): 133262, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901511

RESUMEN

The physicochemical properties of starch and phenolic acid (PA) complexes largely depend on the effect of non-covalent interactions on the microstructure of starch. However, whether there are differences and commonalities in the interactions between various types of PAs and starch remains unclear. The physicochemical properties and digestive characteristics of the complexes were investigated by pre-gelatinization of 16 structurally different PAs and pullulanase-modified rice starches screened. FT-IR and XRD results revealed that PA complexed with debranched rice starch (DRS) through hydrogen bonding and hydrophobic interaction. Benzoic/phenylacetic acid with polyhydroxy groups could enter the helical cavities of the starch chains to promote the formation of V-shaped crystals, and cinnamic acid with p-hydroxyl structure acted between starch chains in a bridging manner, both of which increased the relative crystallinity of DRS, with DRS-ellagic acid increasing to 20.03 %. The digestion and hydrolysis results indicated that the acidification and methoxylation of PA synergistically decreased the enzyme activity leading to a decrease in the digestibility of the complexes, and the resistant starch content of the DRS-vanillic acid complexes increased from 28.27 % to 71.67 %. Therefore, the selection of structurally appropriate PAs can be used for the targeted preparation of starch-based foods and materials.

3.
Nat Commun ; 15(1): 4939, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858381

RESUMEN

The microscopic mechanism for the disappearance of superconductivity in overdoped cuprates is still under heated debate. Here we use scanning tunneling spectroscopy to investigate the evolution of quasiparticle interference phenomenon in Bi2Sr2CuO6+δ over a wide range of hole densities. We find that when the system enters the overdoped regime, a peculiar quasiparticle interference wavevector with arc-like pattern starts to emerge even at zero bias, and its intensity grows with increasing doping level. Its energy dispersion is incompatible with the octet model for d-wave superconductivity, but is highly consistent with the scattering interference of gapless normal carriers. The gapless quasiparticles are mainly located near the antinodes and are independent of temperature, consistent with the disorder scattering mechanism. We propose that a branch of normal fluid emerges from the pair-breaking scattering between flat antinodal bands in the quantum ground state, which is the primary cause for the reduction of superfluid density and suppression of superconductivity in overdoped cuprates.

4.
Int J Biol Macromol ; 271(Pt 1): 132398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754670

RESUMEN

Nattokinase (NK) is found in fermented foods and has high fibrinolytic activity, which makes it promising for biological applications. In this study, a mutant strain (Bacillus subtilis ZT-S1, 5529.56 ± 183.59 U/mL) with high NK-producing activity was obtained using 12C6+ heavy ion beam mutagenesis for the first time. The surface morphology of B. subtilis is also altered by changes in functional groups caused by heavy ion beams. Furthermore, B. subtilis ZT-S1 required more carbon and nitrogen sources and reached stabilization phase later. Comparative genome analysis revealed that most of the mutant implicated genes (oppA, appA, kinA, spoIIP) were related to spore formation. And the affected rpoA is related to the synthesis of the NK-coding gene aprE. In addition, the B. subtilis ZT-S1 obtained by mutagenesis had good genetic stability. This study further explores the factors affecting NK activity and provides a promising microbial resource for NK production in commercial applications.


Asunto(s)
Bacillus subtilis , Mutación , Subtilisinas , Bacillus subtilis/genética , Subtilisinas/genética , Subtilisinas/metabolismo , Carbono/metabolismo , Fenotipo , Mutagénesis/efectos de la radiación , Iones Pesados , Genómica/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano
5.
Bioorg Chem ; 148: 107482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795582

RESUMEN

Toad venom, a traditional Chinese medicine, exhibits remarkable medicinal properties of significant therapeutic value. The peptides present within toad venom possess a wide range of biological functions, yet the neuropeptide B (NPB) and it modification requires further exploration to comprehensively understand its mechanisms of action and potential applications. In this study, a fusion peptide, ANTP-BgNPB, was designed to possess better analgesic properties through the transdermal modification of BgNPB. After optimizing the conditions, the expression of ANTP-BgNPB was successfully induced. The molecular dynamics simulations suggested that the modified protein exhibited improved stability and receptor binding affinity compared to its unmodified form. The analysis of the active site of ANTP-BgNPB and the verification of mutants revealed that GLN3, SER38, and ARG42 were crucial for the protein's recognition and binding with G protein-coupled receptor 7 (GPR7). Moreover, experiments conducted on mice using the hot plate and acetic acid twist body models demonstrated that ANTP-BgNPB was effective in transdermal analgesia. These findings represent significant progress in the development of transdermal delivery medications and could have a significant impact on pain management.


Asunto(s)
Analgésicos , Diseño de Fármacos , Animales , Analgésicos/química , Analgésicos/farmacología , Ratones , Péptidos/química , Péptidos/farmacología , Administración Cutánea , Masculino , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Estructura Molecular , Relación Dosis-Respuesta a Droga , Dolor/tratamiento farmacológico , Humanos
6.
Chemosphere ; 359: 142290, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723691

RESUMEN

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Asunto(s)
Biotransformación , Retardadores de Llama , Helianthus , Bifenilos Polibrominados , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/metabolismo , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Catalasa/metabolismo
7.
iScience ; 27(4): 109506, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38715945

RESUMEN

It is imperative to explore biomarkers that are both precise and readily accessible in the comprehensive management of breast cancer. A multicenter cohort, including 512 breast cancer patients and 198 nonneoplastic individuals, was recruited to detect the level of tumor-derived extracellular vesicles using our method based on dual DNA tetrahedral nanostructures. The level of tumor-derived extracellular vesicles was significantly higher in newly diagnosed breast cancer patients than in nonneoplastic individuals at a cutoff value of 3.58 U/µL. For postoperative metastasis monitoring, the level of tumor-derived extracellular vesicles was significantly higher in breast cancer patients with metastasis than in those without metastasis at a cutoff value of 3.91 U/µL. Its efficacy of diagnosis and metastasis monitoring was superior to traditional tumor markers. Elevated level of tumor-derived extracellular vesicles served as a predictive biomarker for diagnosis and metastasis monitoring in breast cancer patients.

8.
Signal Transduct Target Ther ; 9(1): 126, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773064

RESUMEN

Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.


Asunto(s)
Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inmunoterapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
9.
Animals (Basel) ; 14(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791699

RESUMEN

Transport is a high-risk time for sheep, especially if the distances are long and sheep are fasted for a long time beforehand. Two experiments were conducted to compare transport durations of 1 hour (1 h) and 3 hours (3 h) and the effects of feeding before transport using Dorper × Mongolian sheep, which are typical of the region and may be tolerant of the high temperatures in the Inner Mongolian summer. Thirty 4-month-old male sheep were randomly divided into two treatment groups, with 15 sheep/treatment in each experiment, to evaluate the effects on blood biochemical indicators, stress hormone levels, rectal temperatures, and antioxidant status of lambs in summer. In Experiment 1, the levels of triglycerides and free fatty acids after 3 h transport were significantly lower than after 1 h transport (p < 0.05). The levels of thyroxine and malondialdehyde in blood were greater after 3 h transport than 1 h transport (p < 0.05). Creatine kinase levels after 3 h transport tended to be lower than after 1 h transport (p = 0.051). In Experiment 2, the levels of urea and superoxide dismutase in the group fasted pre-transport was significantly lower than those of the group fed pre-transport (p < 0.05). The serum cortisol level in the pre-transport fed group was higher compared to the group fed pre-transport (p = 0.04). Total antioxidant capacity in the pre-transport fasted group tended to be lower compared to that in the pre-transport fed group (p < 0.0001). We conclude that the reduction in nutritional status of sheep transported for longer and without feed pre-transport suggests that transporting sheep in hot conditions in northern China after fasting for a long period should be restricted. However, a decrease in the stress induced by transport following fasting is worthy of further study.

10.
J Hazard Mater ; 472: 134430, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718502

RESUMEN

Electrolytic manganese residue (EMR), a solid waste generated during electrolytic manganese production, exhibits substantial leaching toxicity owing to its elevated levels of soluble Mn2+ and NH4+. The leaching and recovery of valuable metal ions and NH4+ from EMR are key to the hazard-free treatment and resource utilization of EMR. In this study, two-stage countercurrent leaching with water was used to leach Mn2+, Mg2+, and NH4+ from EMR. Subsequently, two-stage countercurrent extraction was conducted using α-hydroxy-2-ethylhexyl phosphinic acid (α-H-2-EHA) as an extractant to enrich Mn2+, and Mg2+, and NH4+ were recovered via coprecipitation. Based on the calculations for a single leaching-extraction process, the recoveries of Mn2+, Mg2+, and NH4+ ions exceeded 80%, 99%, and 90%, respectively. In addition, high-purity Mn3O4 with an Mn content of 71.61% and struvite were produced. This process represents a win-win strategy that facilitates the hazard-free treatment of EMR while simultaneously recovering valuable Mn2+, Mg2+, and NH4+ resources from waste. Thus, this study provides a novel approach to the hazard-free and resourceful management of solid waste. ENVIRONMENTAL IMPLICATION: Electrolytic manganese residue (EMR), a solid waste generated during electrolytic manganese production, poses significant environmental risks due to its soluble heavy metals and ammonia nitrogen content. Efforts have been made to address this issue, but there has been no mature industrial application due to cost or processing capacity constraints. In this work, solvent extraction was first used to enrich Mn2+ from EMR leachate, and a novel α­hydroxy­2­ethylhexyl phosphinic acid was used as extractant. High purity Mn3O4 and struvite was synthesized through this process. The win­win strategy offers a novel approach for the hazard­free and resourceful utilization of solid waste.

11.
J Biomater Appl ; 39(2): 139-149, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38688330

RESUMEN

Myocardial infarction (MI) is considered as a significant cause of death globally. Exosomes (EXOs) are essential for intercellular communication and pathophysiology of several cardiovascular diseases. Nevertheless, the short half-life and rapid clearance of EXOs leads to a lack of therapeutic doses delivered to the lesioned area. Therefore, an injectable silk fibroin and alginate (SF/Alg) composite hydrogel was developed to bind folate receptor-targeted EXOs (FA-EXOs) derived from H9C2 cells for the therapy of myocardial injury following myocardial infarction-ischemia/reperfusion (MI-I/R). The resulting composite exhibits a variety of properties, including adjustable gelation kinetics, shear-thinning injectability, soft and dynamic stability that adapts to the heartbeat, and outstanding cytocompatibility. After injected into the damaged rat heart, administration of SF/Alg + FA-EXOs significantly enhanced cardiac function as demonstrated by improved ejection fraction, fractional shortening and decreased fibrosis area. The results of real-time PCR and immunofluorescence staining show a remarkable up-regulation in the expression of proteins (CD31) and genes (VWF and Serca2a) related to the heart. Conversely, expression of fibrosis-related genes (TGF-ß1) decreased significantly. Therefore, the obtained SF/Alg + FA-EXOs system remarkably enhanced the intercellular interactions, promoted cell proliferation and angiogenesis, and achieved an outstanding therapeutic effect on MI.


Asunto(s)
Alginatos , Exosomas , Fibroínas , Hidrogeles , Infarto del Miocardio , Alginatos/química , Animales , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Fibroínas/química , Hidrogeles/química , Exosomas/metabolismo , Exosomas/química , Ratas , Ratas Sprague-Dawley , Línea Celular , Masculino
12.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610373

RESUMEN

This paper presents a novel method to improve drill pressure measurement accuracy in slim-hole drilling within the petroleum industry, a sector often plagued by extreme conditions that compromise data integrity. We introduce a temperature compensation model based on a Chaotic-Initiated Adaptive Whale Optimization Algorithm (C-I-WOA) for optimizing Convolutional Neural Networks (CNNs), dubbed the C-I-WOA-CNN model. This approach enhances the Whale Optimization Algorithm (WOA) initialization through chaotic mapping, boosts the population diversity, and features an adaptive weight recalibration mechanism for an improved global search and local optimization. Our results reveal that the C-I-WOA-CNN model significantly outperforms traditional CNNs in its convergence speed, global searching, and local exploitation capabilities, reducing the average absolute percentage error in pressure parameter predictions from 1.9089% to 0.86504%, thereby providing a dependable solution for correcting temperature-induced measurement errors in downhole settings.

13.
Biomed Phys Eng Express ; 10(4)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640908

RESUMEN

Extracellular vesicles (EVs) have been recognized as one of the promising specific drugs for myocardial infarction (MI) prognosis. Nevertheless, low intramyocardial retention of EVs remains a major impediment to their clinical application. In this study, we developed a silk fibroin/hydroxypropyl cellulose (SF/HPC) composite hydrogel combined with AC16 cell-derived EVs targeted modification by folic acid for the treatment of acute myocardial infarction repair. EVs were functionalized by distearoylphosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG-FA) via noncovalent interaction for targeting and accelerating myocardial infarction repair.In vitro, cytocompatibility analyses revealed that the as-prepared hydrogels had excellent cell viability by MTT assay and the functionalized EVs had higher cell migration by scratch assay.In vivo, the composite hydrogels can promote myocardial tissue repair effects by delaying the process of myocardial fibrosis and promoting angiogenesis of infarct area in MI rat model.


Asunto(s)
Celulosa , Celulosa/análogos & derivados , Vesículas Extracelulares , Fibroínas , Hidrogeles , Infarto del Miocardio , Infarto del Miocardio/tratamiento farmacológico , Animales , Vesículas Extracelulares/metabolismo , Fibroínas/química , Ratas , Celulosa/química , Hidrogeles/química , Ratas Sprague-Dawley , Supervivencia Celular/efectos de los fármacos , Masculino , Polietilenglicoles/química , Movimiento Celular/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Ácido Fólico/química , Humanos , Línea Celular
14.
Chemosphere ; 356: 141896, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579949

RESUMEN

Complex rhizoremediation is the main mechanism of phytoremediation in organic-contaminated soil. Low molecular weight organic acids (LMWOAs) in root exudates have been shown to increase the bioavailability of contaminants and are essential for promoting the dissipation of contaminants. The effects of root exudates on the dissipation of organophosphate esters (OPEs) in soil are unclear. Consequently, we studied the combined effects of root exudates, soil enzymes and microorganisms on OPEs (tri (1-chloro-2-propyl) phosphate (TCPP) and triphenyl phosphate (TPP)) dissipation through pot experiments. Oxalic acid (OA) was confirmed to be the main component of LMWOAs in root exudates of ryegrass. The existence of OA increased the dissipation rate of OPEs by 6.04%-25.50%. Catalase and dehydrogenase activities were firstly activated and then inhibited in soil. While, urease activity was activated and alkaline phosphatase activity was inhibited during the exposure period. More bacteria enrichment (e.g., Sphingomonas, Pseudomonas, Flavisolibacter, Pontibacter, Methylophilus and Massilia) improved the biodegradation of OPEs. In addition, the transformation paths of OPEs hydrolysis and methylation under the action of root exudates were observed. This study provided theoretical insights into reducing the pollution risk of OPEs in the soil.


Asunto(s)
Biodegradación Ambiental , Ésteres , Lolium , Ácido Oxálico , Raíces de Plantas , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Ácido Oxálico/metabolismo , Contaminantes del Suelo/metabolismo , Lolium/metabolismo , Raíces de Plantas/metabolismo , Suelo/química , Ésteres/metabolismo , Organofosfatos/metabolismo , Oxidorreductasas/metabolismo , Catalasa/metabolismo , Bacterias/metabolismo , Exudados de Plantas/metabolismo , Exudados de Plantas/química
15.
Cell Mol Life Sci ; 81(1): 122, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456997

RESUMEN

Doxorubicin-induced cardiotoxicity (DIC), which is a cardiovascular complication, has become the foremost determinant of decreased quality of life and mortality among survivors of malignant tumors, in addition to recurrence and metastasis. The limited ability to accurately predict the occurrence and severity of doxorubicin-induced injury has greatly hindered the prevention of DIC, but reducing the dose to mitigate side effects may compromise the effective treatment of primary malignancies. This has posed a longstanding clinical challenge for oncologists and cardiologists. Ferroptosis in cardiomyocytes has been shown to be a pivotal mechanism underlying cardiac dysfunction in DIC. Ferroptosis is influenced by multiple factors. The innate immune response, as exemplified by neutrophil extracellular traps (NETs), may play a significant role in the regulation of ferroptosis. Therefore, the objective of this study was to investigate the involvement of NETs in doxorubicin-induced cardiomyocyte ferroptosis and elucidate their regulatory role. This study confirmed the presence of NETs in DIC in vivo. Furthermore, we demonstrated that depleting neutrophils effectively reduced the occurrence of doxorubicin-induced ferroptosis and myocardial injury in DIC. Additionally, our findings showed the pivotal role of high mobility group box 1 (HMGB1) as a critical molecule implicated in DIC and emphasized its involvement in the modulation of ferroptosis subsequent to NETs inhibition. Mechanistically, we obtained preliminary evidence suggesting that doxorubicin-induced NETs could modulate yes-associated protein (YAP) activity by releasing HMGB1, which subsequently bound to toll like receptor 4 (TLR4) on the cardiomyocyte membrane, thereby influencing cardiomyocyte ferroptosis in vitro. Our findings suggest that doxorubicin-induced NETs modulate cardiomyocyte ferroptosis via the HMGB1/TLR4/YAP axis, thereby contributing to myocardial injury. This study offers a novel approach for preventing and alleviating DIC by targeting alterations in the immune microenvironment.


Asunto(s)
Trampas Extracelulares , Ferroptosis , Proteína HMGB1 , Cardiopatías , Humanos , Miocitos Cardíacos/metabolismo , Trampas Extracelulares/metabolismo , Proteína HMGB1/metabolismo , Receptor Toll-Like 4/metabolismo , Cardiotoxicidad/metabolismo , Calidad de Vida , Cardiopatías/metabolismo , Doxorrubicina/efectos adversos
16.
J Agric Food Chem ; 72(11): 5645-5658, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38462712

RESUMEN

The present study evaluated the effects of sodium butyrate (SB) supplementation on exocrine and endocrine pancreatic development in dairy calves. Fourteen male Holstein calves were alimented with either milk or milk supplemented with SB for 70 days. Pancreases were collected for analysis including staining, immunofluorescence, electron microscopy, qRT-PCR, Western blotting, and proteomics. Results indicated increased development in the SB group with increases in organ size, protein levels, and cell growth. There were also exocrine enhancements manifested as higher enzyme activities and gene expressions along with larger zymogen granules. Endocrine benefits included elevated gene expression, more insulin secretion, and larger islets, indicating a rise in ß-cell proliferation. Proteomics and pathway analyses pinpointed the G protein subunit alpha-15 as a pivotal factor in pancreatic and insulin secretion pathways. Overall, SB supplementation enhances pancreatic development by promoting its exocrine and endocrine functions through G protein regulation in dairy calves.


Asunto(s)
Suplementos Dietéticos , Proteómica , Animales , Bovinos/genética , Masculino , Ácido Butírico/farmacología , Suplementos Dietéticos/análisis , Páncreas , Proteínas de Unión al GTP
17.
Nano Lett ; 24(11): 3331-3338, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457459

RESUMEN

1T-MoS2 has become an ideal anode for sodium-ion batteries (SIBs). However, the metastable feature of 1T-MoS2 makes it difficult to directly synthesize under normal conditions. In addition, it easily transforms into 2H phase via restacking, resulting in inferior electrochemical performance. Herein, the electron configuration of Mo 4d orbitals is modulated and the stable 1T-MoS2 is constructed by nickel (Ni) introduction (1T-Ni-MoS2). The original electron configuration of Mo 4d orbitals is changed via the electron injection by Ni, which triggers the phase transition from 2H to 1T phase, thus improving the electrical conductivity and accelerating the redox kinetics of the material. Consequently, 1T-Ni-MoS2 exhibits superior rate capability (266.8 mAh g-1 at 10 A g-1) and excellent cycle life (358.7 mAh g-1 at 1 A g-1 after 350 cycles). In addition, the assembled Na3V2(PO4)3/C||1T-Ni-MoS2 full cells deliver excellent electrochemical properties and show great prospects in energy storage devices.

18.
Environ Pollut ; 348: 123853, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552772

RESUMEN

Microplastics (MPs) pollution, together with its consequential effect on aquatic biota, represent a burgeoning environmental concern that has garnered significant scholarly attention. Thiamethoxam (TMX), a prevalently utilized neonicotinoid insecticide, is renowned for its neurotoxic impact and selective action against targeted pests. The aquatic environment serves as a receptacle for numerous pollutants, such as MPs and neonicotinoid insecticides. However, there is currently a lack of comprehensive understanding regarding the toxic effects of co-exposure to aged MPs and neonicotinoid insecticides in aquatic organisms. Therefore, we endeavor to elucidate the deleterious impacts of aged polystyrene (PS) and TMX on zebrafish (Danio rerio) larvae when present at environmentally relevant concentrations, and to reveal the underlying molecular mechanisms driving these effects. Our study showed that exposure to aged PS, TMX, or their combination notably inhibited the heart rate and locomotion of zebrafish larvae, with a pronounced effect observed under combined exposure. Aged PS and TMX were found to diminish the activity of antioxidative enzymes (SOD, CAT, and GST), elevate MDA levels, and disrupt neurotransmitter homeostasis (5-HT, GABA and ACh). Notably, the mixtures exhibited synergistic effects. Moreover, gene expression related to oxidative stress (e.g., gstr1, gpx1a, sod1, cat1, p38a, ho-1, and nrf2b) and neurotransmission (e.g., ache, ChAT, gat1, gabra1, 5ht1b, and 5ht1aa) was significantly altered upon co-exposure to aged PS and TMX in larval zebrafish. In summary, our findings support the harmful effects of aged MPs and the neonicotinoid insecticides they carry on aquatic organisms. Results from this study enhance our understanding of the biological risks of MPs and insecticides, as well as help fill existing knowledge gaps on neonicotinoid insecticides and MPs coexistence toxicity in aquatic environment.


Asunto(s)
Insecticidas , Perciformes , Contaminantes Químicos del Agua , Animales , Tiametoxam/metabolismo , Pez Cebra/metabolismo , Insecticidas/metabolismo , Microplásticos/toxicidad , Plásticos/metabolismo , Larva , Poliestirenos/metabolismo , Organismos Acuáticos , Contaminantes Químicos del Agua/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-38523562

RESUMEN

OBJECTIVE: We studied whether the use of hydroxychloroquine (HCQ) for COVID-19 resulted in supply shortages for patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). METHODS: We used US claims data (IQVIA PHARMETRICS® Plus for Academics [PHARMETRICS]) and hospital electronic records from Spain (Institut Municipal d'Assistència Sanitària Information System [IMASIS]) to estimate monthly rates of HCQ use between January 2019 and March 2022, in the general population and in patients with RA and SLE. Methotrexate (MTX) use was estimated as a control. RESULTS: More than 13.5 million individuals (13,311,811 PHARMETRICS, 207,646 IMASIS) were included in the general population cohort. RA and SLE cohorts enrolled 135,259 and 39,295 patients, respectively, in PHARMETRICS. Incidence of MTX and HCQ were stable before March 2020. On March 2020, the incidence of HCQ increased by 9- and 67-fold in PHARMETRICS and IMASIS, respectively, and decreased in May 2020. Usage rates of HCQ went back to prepandemic trends in Spain but remained high in the United States, mimicking waves of COVID-19. No significant changes in HCQ use were noted among patients with RA and SLE. MTX use rates decreased during HCQ approval period for COVID-19 treatment. CONCLUSION: Use of HCQ increased dramatically in the general population in both Spain and the United States during March and April 2020. Whereas Spain returned to prepandemic rates after the first wave, use of HCQ remained high and followed waves of COVID-19 in the United States. However, we found no evidence of general shortages in the use of HCQ for both RA and SLE in the United States.

20.
Heart ; 110(9): 635-643, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38471729

RESUMEN

OBJECTIVE: To study the association between COVID-19 vaccination and the risk of post-COVID-19 cardiac and thromboembolic complications. METHODS: We conducted a staggered cohort study based on national vaccination campaigns using electronic health records from the UK, Spain and Estonia. Vaccine rollout was grouped into four stages with predefined enrolment periods. Each stage included all individuals eligible for vaccination, with no previous SARS-CoV-2 infection or COVID-19 vaccine at the start date. Vaccination status was used as a time-varying exposure. Outcomes included heart failure (HF), venous thromboembolism (VTE) and arterial thrombosis/thromboembolism (ATE) recorded in four time windows after SARS-CoV-2 infection: 0-30, 31-90, 91-180 and 181-365 days. Propensity score overlap weighting and empirical calibration were used to minimise observed and unobserved confounding, respectively.Fine-Gray models estimated subdistribution hazard ratios (sHR). Random effect meta-analyses were conducted across staggered cohorts and databases. RESULTS: The study included 10.17 million vaccinated and 10.39 million unvaccinated people. Vaccination was associated with reduced risks of acute (30-day) and post-acute COVID-19 VTE, ATE and HF: for example, meta-analytic sHR of 0.22 (95% CI 0.17 to 0.29), 0.53 (0.44 to 0.63) and 0.45 (0.38 to 0.53), respectively, for 0-30 days after SARS-CoV-2 infection, while in the 91-180 days sHR were 0.53 (0.40 to 0.70), 0.72 (0.58 to 0.88) and 0.61 (0.51 to 0.73), respectively. CONCLUSIONS: COVID-19 vaccination reduced the risk of post-COVID-19 cardiac and thromboembolic outcomes. These effects were more pronounced for acute COVID-19 outcomes, consistent with known reductions in disease severity following breakthrough versus unvaccinated SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Insuficiencia Cardíaca , Tromboembolia Venosa , Humanos , Vacunas contra la COVID-19/efectos adversos , COVID-19/epidemiología , COVID-19/prevención & control , Tromboembolia Venosa/epidemiología , Tromboembolia Venosa/etiología , Tromboembolia Venosa/prevención & control , Estudios de Cohortes , SARS-CoV-2 , Insuficiencia Cardíaca/epidemiología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...