RESUMEN
Sterol regulatory element binding proteins (SREBPs) are a series of cholesterol-related transcription factors. Their role in regulating brain cholesterol biosynthesis, amyloid accumulation, and tau tangles formation has been intensively studied in protein-protein interaction analysis based on genes in clinical databases. SREBPs play an important role in maintaining cholesterol homeostasis in the brain. There are three subtypes of SREBPs, SREBP-1a stimulates the expression of genes related to cholesterol and fatty acid synthesis, SREBP-1c stimulates adipogenesis, and SREBP-2 stimulates cholesterol synthase and LDL receptors. SREBP-2 is activated in response to cholesterol depletion and stimulates a compensatory upregulation of cholesterol uptake and synthesis. Previous studies have shown that inhibition of SREBP-2 reduces cholesterol and amyloid accumulation, and new research suggests that SREBPs play a multifaceted role in Alzheimer's disease. Here, we highlight the importance of SREBPs in AD, in terms of multiple pathways regulating cholesterol in the brain, and primarily demonstrate the potential of SREBP-2 inhibitors. There was a trend towards a significant increase in the expression levels of different SREBP isoforms in AD patients compared to healthy controls. Therefore, there is a close link between SREBPs and AD, and this review analyses the potential role of SREBPs in the treatment of AD. In addition, we systematically reviewed the research progress of SREBPs in AD, and this review will provide more innovative insights into the pathogenesis and treatment of AD and new strategies for drug development in AD.
RESUMEN
Tooth agenesis (TA) occurs when tooth development is disrupted at the initiation stage. It can be classified into non-syndromic and syndromic forms (named NSTA and STA), depending on whether it is accompanied by abnormalities of other organs and systems. Genetic factors play a predominant role in the pathogenesis of tooth agenesis, with dozens of genes implicated in both forms. Several genes have been identified, mutations in which can lead to both forms of TA. Among these, WNT10A and EDA are frequently mutated genes in this context, representing extensively researched and documented genes in human non-syndromic selective agenesis of permanent teeth and their association with ectodermal dysplasia syndromes. In this review, we present an overview of the current knowledge regarding genes associated with NSTA and STA, focusing on the distribution and nature of WNT10A and EDA gene mutations. We also explore how these mutations relate to the condition's both forms, including their association with the number of missing permanent teeth.
RESUMEN
The placenta is essential organ for oxygen and nutrient exchange between the mother and the developing fetus. Trophoblast lineage differentiation is closely related to the normal function of the placenta. Trophoblast stem cells (TSCs) can differentiate into all placental trophoblast subtypes and are widely used as in vitro stem cell models to study placental development and trophoblast lineage differentiation. Although extensive research has been conducted on the differentiation of TSCs, the possible parallels between trophoblast giant cells (TGCs) that are differentiated from TSCs in vitro and the various subtypes of TGC lineages in vivo are still poorly understood. In this study, mouse TSCs (mTSCs) were induced to differentiate into TGCs, and our mRNA sequencing (RNA-seq) data revealed that mTSCs and TGCs have distinct transcriptional signatures. We conducted a comparison of mTSCs and TGCs transcriptomes with the published transcriptomes of TGC lineages in murine placenta detected by single-cell RNA-seq and found that mTSCs tend to differentiate into maternal blood vessel-associated TGCs in vitro. Moreover, we identified the transcription factor (TF) ZMAT1, which may be responsible for the differentiation of mTSCs into sinusoid TGCs, and the TFs EGR1 and MITF, which are likely involved in the differentiation of mTSCs into spiral artery-associated TGCs. Thus, our findings provide a valuable resource for the mechanisms of trophoblast lineage differentiation and placental deficiency-associated diseases development.
Asunto(s)
Vasos Sanguíneos , Células Madre , Factores de Transcripción , Transcriptoma , Trofoblastos , Femenino , Masculino , Ratones , Embarazo , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Diferenciación Celular , Linaje de la Célula , Intercambio Materno-Fetal , Ratones Endogámicos C57BL , Placenta/citología , Análisis de Expresión Génica de una Sola Célula , Células Madre/citología , Factores de Transcripción/metabolismo , Trofoblastos/citología , AnimalesRESUMEN
A cobalt-catalyzed intramolecular Markovnikov hydroalkoxycarbonylation and hydroaminocarbonylation of unactivated alkenes has been developed, enabling highly chemo- and regioselective synthesis of α-alkylated γ-lactones and α-alkylated γ-lactams in good yields. The mild reaction conditions allow use of mono-, di- and trisubstituted alkenes bearing a variety of functional groups. Preliminary mechanistic studies suggest the reaction proceeds through a CO-mediated hydrogen atom transfer (HAT) and radical-polar crossover (RPC) process, in which a cationic acylcobalt(IV) complex is proposed as the key intermediate.
RESUMEN
Soluble transforming growth factor beta receptor 3 (sTGFBR3) antagonist is a new focus in the research and development of Alzheimer's disease (AD) drugs. Our previous studies have identified sTGFBR3 as a promising new target for AD, with few targeted antagonists identified. In this study, we performed structural modeling of sTGFBR3 using AlphaFold2, followed by high-throughput virtual screening and surface plasmon resonance assays. which collectively identified Xanthone as potential compounds for targeting sTGFBR3. After optimizing the sTGFBR3-Xanthone complex using molecular dynamics (MD) simulations, we prepared a series of novel Xanthone derivatives and evaluated their anti-inflammatory activity, toxicity, and structure-activity relationship in BV2 cell model induced by lipopolysaccharides (LPS) or APP/PS1/tau mouse brain extract (BE). Several derivatives with the most potent anti-inflammatory activity were tested for blood-brain barrier permeability and sTGFBR3 affinity. Derivative P24, selected for its superior properties, was further evaluated in vitro. The results indicated that P24 increased the activation of TGF-ß signaling and decreased the activation of IκBα/NF-κB signaling by targeting sTGFBR3, thereby regulating the inflammation-phagocytosis balance in microglia. Moreover, the low acute toxicity, long half-life, and low plasma clearance of P24 suggest that it can be sustained in vivo. This property may render P24 a more effective treatment modality for chronic diseases, particularly AD. The study demonstrates P24 serve as potential novel candidates for the treatment of AD via antagonizing sTGFBR3.
Asunto(s)
Enfermedad de Alzheimer , Xantonas , Xantonas/química , Xantonas/farmacología , Xantonas/síntesis química , Animales , Humanos , Ratones , Relación Estructura-Actividad , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Estructura Molecular , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Ratones Endogámicos C57BL , MasculinoRESUMEN
We report the development of an all-optical approach that excites the fundamental compression mode in a diamond Lamb wave resonator with an optical gradient force and detects the induced vibrations via strain coupling to a silicon vacancy center, specifically, via phonon sidebands in the optical excitation spectrum of the silicon vacancy. Sideband optical interferometry has also been used for the detection of in-plane mechanical vibrations, for which conventional optical interferometry is not effective. These experiments demonstrate a gigahertz fundamental compression mode with a Q factor of >107 at temperatures near 7 K, providing a promising platform for reaching the quantum regime of spin mechanics, especially phononic cavity quantum electrodynamics of electron spins.
RESUMEN
Bombesin receptor subtype-3 (BRS3) is an important orphan G protein-coupled receptor that regulates energy homeostasis and insulin secretion. As a member of the bombesin receptor (BnR) family, the lack of known endogenous ligands and high-resolution structure has hindered the understanding of BRS3 signaling and function. We present two cryogenic electron microscopy (cryo-EM) structures of BRS3 in complex with the heterotrimeric Gq protein in its active states: one bound to the pan-BnR agonist BA1 and the other bound to the synthetic BRS3-specific agonist MK-5046. These structures reveal the architecture of the orthosteric ligand pocket underpinning molecular recognition and provide insights into the structural basis for BRS3's selectivity and low affinity for bombesin peptides. Examination of conserved micro-switches suggests a shared activation mechanism among BnRs. Our findings shed light on BRS3's ligand selectivity and signaling mechanisms, paving the way for exploring its therapeutic potential for diabetes, obesity, and related metabolic disorders.
Asunto(s)
Receptores de Bombesina , Receptores de Bombesina/metabolismo , Ligandos , Humanos , Microscopía por Crioelectrón , Unión Proteica , Animales , Células HEK293 , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/químicaRESUMEN
Targeting dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has been verified to regulate the progression of tau pathology as a promising treatment for Alzheimer's disease (AD), while the research progress on DYRK1A inhibitors seemed to be in a bottleneck period. In this work, we identified 32 (ZJCK-6-46) as the most potential DYRK1A inhibitor (IC50 = 0.68 nM) through rational design, systematic structural optimization, and comprehensive evaluation. Compound 32 exhibited acceptable in vitro absorption, distribution, metabolism, and excretion (ADME) properties and significantly reduced the expression of p-Tau Thr212 in Tau (P301L) 293T cells and SH-SY5Y cells. Moreover, compound 32 showed favorable bioavailability, blood-brain barrier (BBB) permeability, and the potential of ameliorating cognitive dysfunction by obviously reducing the expression of phosphorylated tau and neuronal loss in vivo, which was deserved as a valuable molecular tool to reveal the role of DYRK1A in the pathogenesis of AD and to further promote the development of anti-AD drugs.
Asunto(s)
Enfermedad de Alzheimer , Quinasas DyrK , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteínas tau , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inhibidores , Relación Estructura-Actividad , Administración Oral , Masculino , Ratas , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Células HEK293 , Ratones , Descubrimiento de Drogas , Fosforilación/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ratas Sprague-DawleyRESUMEN
Golgi membrane protein 1 (Golm1), a transmembrane protein with diverse subcellular localizations, has garnered significant attention in recent years due to its strong association with the development and progression of liver diseases and numerous cancers. Interestingly, although Golm1 is a membrane protein, the C-terminal of Golm1, which contains a coiled coil domain and a flexible acid region, can also be detected in the plasma of patients with various liver diseases. Notably, the coiled coil domain of serum Golm1 is postulated to play a pivotal role in physiological and pathological functions. However, little is currently known about the structure of this coiled coil domain and the full-length protein, which may limit our understanding of Golm1. Therefore, this study aims to address this gap in knowledge and reports the first crystal structure of the coiled coil domain of Golm1 at a resolution of 2.28 Å. Meanwhile, we have also confirmed that the Golm1 coiled coil domain in solution can form tetramer. Our results reveal that Golm1 can form a novel tetrameric structure that differs from the previous reported dimeric structure Golm1 could assemble, which may provide novel insights into the diversity of physiological functions and pathological roles.
Asunto(s)
Proteínas de la Membrana , Dominios Proteicos , Multimerización de Proteína , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Secuencia de Aminoácidos , Cristalografía por Rayos XRESUMEN
Efficiency reduction in perovskite solar cells (PSCs) during the magnification procedure significantly hampers commercialization. Vacuum-flash (VF) has emerged as a promising method to fabricate PSCs with consistent efficiency across scales. However, the slower solvent removal rate of VF compared to the anti-solvent method leads to perovskite films with buried defects. Thus, this work employs low-toxic Lewis base ligand solvent N-ethyl-2-pyrrolidone (NEP) to improve the nucleation process of perovskite films. NEP, with a mechanism similar to that of N-methyl-2-pyrrolidone in FA-based perovskite formation, enhances the solvent removal speed owing to its lower coordination ability. Based on this strategy, p-i-n PSCs with an optimized interface attain a power conversion efficiency (PCE) of 24.19% on an area of 0.08 cm2. The same nucleation process enables perovskite solar modules (PSMs) to achieve a certified PCE of 23.28% on an aperture area of 22.96 cm2, with a high geometric fill factor of 97%, ensuring nearly identical active area PCE (24%) in PSMs as in PSCs. This strategy highlights the potential of NEP as a ligand solvent choice for the commercialization of PSCs.
RESUMEN
INTRODUCTION: Tissues maintain their function through interaction with microenvironment. During aging, both hair follicles and blood vessels (BV) in skin undergo degenerative changes. However, it is elusive whether the changes are due to intrinsic aging changes in hair follicles or blood vessels respectively, or their interactions. OBJECTIVE: To explore how hair follicles and blood vessels interact to regulate angiogenesis and hair regeneration during aging. METHODS: Single-cell RNA-sequencing (scRNA-seq) analyses were used to identify the declined ability of dermal papilla (DP) and endothelial cells (ECs) during aging. CellChat and CellCall were performed to investigate interaction between DP and ECs. Single-cell metabolism (scMetabolism) analysis and iPATH were applied to analyze downstream metabolites in DP and ECs. Hair-plucking model and mouse cell organoid model were used for functional studies. RESULTS: During aging, distance and interaction between DP and ECs are decreased. DP interacts with ECs, with decreased EDN1-EDNRA signaling from ECs to DP and CTF1-IL6ST signaling from DP to ECs during aging. ECs-secreted EDN1 binds to DP-expressed EDNRA which enhances Taurine (TA) metabolism to promote hair regeneration. DP-emitted CTF1 binds to ECs-expressed IL6ST which activates alpha-linolenic acid (ALA) metabolism to promote angiogenesis. Activated EDN1-EDNRA-TA signaling promotes hair regeneration in aged mouse skin and in organoid cultures, and increased CTF1-IL6ST-ALA signaling also promotes angiogenesis in aged mouse skin and organoid cultures. CONCLUSIONS: Our finding reveals reciprocal interactions between ECs and DP. ECs releases EDN1 sensed by DP to activate TA metabolism which induces hair regeneration, while DP emits CTF1 signal received by ECs to enhance ALA metabolism which promotes angiogenesis. Our study provides new insights into mutualistic cellular crosstalk between hair follicles and blood vessels, and identifies novel signaling contributing to the interactions of hair follicles and blood vessels in normal and aged skin.
RESUMEN
OBJECTIVE: Porphyromonas gingivalis (P. gingivalis) is a key etiological agent in periodontitis and functions as a facultative intracellular microorganism and involves many virulence factors. These virulence factors participate in multiple intracellular processes, like ferroptosis, the mechanistic underpinnings remain to be elucidated. Aim of this study was to investigate the effects of virulence factors on the host cells. DESIGN: Human umbilical vein endothelial cells (HUVECs) were treated with 4% paraformaldehyde-fixed P. gingivalis, and subsequent alterations in gene expression were profiled via RNA-seq. Further, the molecules associated with ferroptosis were quantitatively analyzed using qRT-PCR and Western blot. RESULTS: A total of 1125 differentially expressed genes (DEGs) were identified, encompassing 225 upregulated and 900 downregulated. Ferroptosis was conspicuously represented in the kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, with notable upregulation of Heme oxygenase 1 (HMOX1), Ferritin light chain (FTL), and Solute carrier family 3 member 2 (SLC3A2) and downregulation of Scavenger receptor class A member 5 (SCARA5) and glutaminase (GLS). Random selection of DEGs for validation through qRT-PCR corroborated the RNA-Seq data (R2 = 0.93). Kelch like ECH associated protein 1 (Keap1) protein expression decreased after 4 and 8 h, while NFE2 like bZIP transcription factor 2 (Nrf2) and HMOX1 were elevated, with significant nuclear translocation of Nrf2. CONCLUSIONS: The virulence factors of P. gingivalis may potentially instigating ferroptosis through activation of the Keap1-Nrf2-HMOX1 signaling cascade, in conjunction with modulating the expression of other ferroptosis-associated elements. Further research is necessary to achieve a thorough comprehension of these complex molecular interactions.
Asunto(s)
Ferroptosis , Células Endoteliales de la Vena Umbilical Humana , Porphyromonas gingivalis , Factores de Virulencia , Porphyromonas gingivalis/patogenicidad , Porphyromonas gingivalis/genética , Ferroptosis/genética , Humanos , Factores de Virulencia/genética , Regulación hacia Arriba , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Western Blotting , Regulación hacia Abajo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismoRESUMEN
Sleepwear and bedding materials can affect sleep quality by influencing the skin and body temperature and thermal comfort. This review systematically evaluates the impact of sleepwear or bedding of different fibre types on sleep quality. A systematic search was conducted in six data bases plus Google Scholar and manual searches. Original articles that compared human sleep quality between at least two fibre types of bedding or sleepwear were included, resulting in nine eligible articles included in the review. The fibre types included cotton, polyester, wool, and blended materials for sleepwear; cotton, duck down, goose down, polyester and wool for duvet; and linen and a combination of cotton and polyester for bedding. The interplay between fibre materials and sleep quality is complex. Blended sleepwear demonstrated potential benefits for specific populations. Wool sleepwear showed benefits for sleep onset in adults (cool conditions) and in older adults (warm conditions). Linen bedsheets improved sleep quality under warm conditions in young adults. Goose down-filled duvets increased slow-wave sleep under cool conditions in young adults. However, a systematic comparison of fibre types is challenging due to the diverse nature of the studies evaluating sleep quality. Further research employing standardised methodologies with standard fibre samples in different populations and in different temperature conditions is imperative to elucidate comprehensively the effects of fibre choices on sleep quality. Despite the limitations and heterogeneity of the included studies, this analysis offers valuable insights for individuals seeking to optimise their sleep experiences and for manufacturers developing sleep-related products.
RESUMEN
BACKGROUND: The efficacy and safety of anti-tumor necrosis factor-α (TNF-α) monoclonal antibody therapy [adalimumab (ADA) and infliximab (IFX)] with therapeutic drug monitoring (TDM), which has been proposed for inflammatory bowel disease (IBD) patients, are still controversial. AIM: To determine the efficacy and safety of anti-TNF-α monoclonal antibody therapy with proactive TDM in patients with IBD and to determine which subtype of IBD patients is most suitable for proactive TDM interventions. METHODS: As of July 2023, we searched for randomized controlled trials (RCTs) and observational studies in PubMed, Embase, and the Cochrane Library to compare anti-TNF-α monoclonal antibody therapy with proactive TDM with therapy with reactive TDM or empiric therapy. Pairwise and network meta-analyses were used to determine the IBD patient subtype that achieved clinical remission and to determine the need for surgery. RESULTS: This systematic review and meta-analysis yielded 13 studies after exclusion, and the baseline indicators were balanced. We found a significant increase in the number of patients who achieved clinical remission in the ADA [odds ratio (OR) = 1.416, 95% confidence interval (CI): 1.196-1.676] and RCT (OR = 1.393, 95%CI: 1.182-1.641) subgroups and a significant decrease in the number of patients who needed surgery in the proactive vs reactive (OR = 0.237, 95%CI: 0.101-0.558) and IFX + ADA (OR = 0.137, 95%CI: 0.032-0.588) subgroups, and the overall risk of adverse events was reduced (OR = 0.579, 95%CI: 0.391-0.858) according to the pairwise meta-analysis. Moreover, the network meta-analysis results suggested that patients with IBD treated with ADA (OR = 1.39, 95%CI: 1.19-1.63) were more likely to undergo TDM, especially in comparison with patients with reactive TDM (OR = 1.38, 95%CI: 1.07-1.77). CONCLUSION: Proactive TDM is more suitable for IBD patients treated with ADA and has obvious advantages over reactive TDM. We recommend proactive TDM in IBD patients who are treated with ADA.
RESUMEN
Neurologic disorders are often accompanied by alterations in lipids and oxylipins in the brain. However, the complexity of the lipidome in the brain and its changes during brain damage caused by diabetes remain poorly understood. Herein, we developed an enhanced spatially resolved lipidomics approach with the assistance of on-tissue chemical derivatization to study lipid metabolism in the rat brain. This method enabled the spatially resolved analysis of 560 lipids and oxylipins in 19 brain microregions in coronal and sagittal sections and remarkably improved the coverage of lipidome detection. We applied this method to lipidomic studies of the diabetic rat brain and found that lipid dysregulation followed a microregion-specific pattern. Carnitines and glycerolipids were mainly elevated in the corpus callosum (midbrain) and pineal gland regions, respectively. In addition, most oxylipins, including fatty aldehydes and oxo fatty acids, were significantly upregulated in nine brain microregions. We produced a spatially resolved analysis of lipids and oxylipins, providing a novel analytical tool for brain metabolism research.
Asunto(s)
Diabetes Mellitus Tipo 2 , Lipidómica , Ratas , Humanos , Lípidos/análisis , Oxilipinas , Encéfalo , AnimalesRESUMEN
Spatially resolved lipidomics is pivotal for detecting and interpreting lipidomes within spatial contexts using the mass spectrometry imaging (MSI) technique. However, comprehensive and efficient lipid identification in MSI remains challenging. Herein, we introduce a high-coverage, database-driven approach combined with air-flow-assisted desorption electrospray ionization (AFADESI)-MSI to generate spatial lipid profiles across whole-body mice. Using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we identified 2868 unique lipids in the serum and various organs of mice. Subsequently, we systematically evaluated the distinct ionization properties of the lipids between LC-MS and MSI and created a detailed MSI database containing 14â¯123 ions. This method enabled the visualization of aberrant fatty acid and phospholipid metabolism across organs in a diabetic mouse model. As a powerful extension incorporated into the MSIannotator tool, our strategy facilitates the rapid and accurate annotation of lipids, providing new research avenues for probing spatially resolved heterogeneous metabolic changes in response to diseases.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Espectrometría de Masas en Tándem , Lipidómica/métodos , Cromatografía Liquida , Ácidos Grasos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
Niacin, an age-old lipid-lowering drug, acts through the hydroxycarboxylic acid receptor 2 (HCAR2), a G-protein-coupled receptor (GPCR). Yet, its use is hindered by side effects like skin flushing. To address this, specific HCAR2 agonists, like MK-6892 and GSK256073, with fewer adverse effects have been created. However, the activation mechanism of HCAR2 by niacin and these new agonists is not well understood. Here, we present three cryoelectron microscopy structures of Gi-coupled HCAR2 bound to niacin, MK-6892, and GSK256073. Our findings show that different ligands induce varying binding pockets in HCAR2, influenced by aromatic amino acid clusters (W91ECL1, H1614.59, W1885.38, H1895.39, and F1935.43) from receptors ECL1, TM4, and TM5. Additionally, conserved residues R1113.36 and Y2847.43, unique to the HCA receptor family, likely initiate activation signal propagation in HCAR2. This study provides insights into ligand recognition, receptor activation, and G protein coupling mediated by HCAR2, laying the groundwork for developing HCAR2-targeted drugs.
Asunto(s)
Ácidos Ciclohexanocarboxílicos , Niacina , Humanos , Niacina/farmacología , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , LípidosRESUMEN
Phosphorylation of G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) desensitizes G-protein signalling and promotes arrestin signalling, which is also modulated by biased ligands1-6. The molecular assembly of GRKs on GPCRs and the basis of GRK-mediated biased signalling remain largely unknown owing to the weak GPCR-GRK interactions. Here we report the complex structure of neurotensin receptor 1 (NTSR1) bound to GRK2, Gαq and the arrestin-biased ligand SBI-5537. The density map reveals the arrangement of the intact GRK2 with the receptor, with the N-terminal helix of GRK2 docking into the open cytoplasmic pocket formed by the outward movement of the receptor transmembrane helix 6, analogous to the binding of the G protein to the receptor. SBI-553 binds at the interface between GRK2 and NTSR1 to enhance GRK2 binding. The binding mode of SBI-553 is compatible with arrestin binding but clashes with the binding of Gαq protein, thus providing a mechanism for its arrestin-biased signalling capability. In sum, our structure provides a rational model for understanding the details of GPCR-GRK interactions and GRK2-mediated biased signalling.
Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G , Receptores Acoplados a Proteínas G , Transducción de Señal , Arrestinas/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/biosíntesis , Quinasa 2 del Receptor Acoplado a Proteína-G/química , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Ligandos , Unión Proteica , Receptores de Neurotensina/metabolismoRESUMEN
Background: Antibiotics alter the microbial balance commonly resulting in antibiotic-associated diarrhea (AAD). Probiotics may prevent and treat AAD by providing the gut barrier and restoring the gut microflora. This study will overview the Systematic Reviews (SRs) of probiotics in preventing and treating AAD in children. It will also assess the reporting, methodological, and evidence quality of the included SRs to provide evidence for their clinical practice. Methods: After searching PubMed, Embase, Cochrane Library, CNKI, CBM, VIP, and WanFang Data databases, and finally included SRs of probiotics in the prevention and treatment of AAD in children, which were published before 1 October 2022. The reporting, methodological, and evidence quality of the included SRs were assessed by PRISMA 2020 statement, AMSTAR 2 tool, and GRADE system. Results: A total of 20 SRs were included, and the results of PRISMA 2020 showed that 4 out of 20 SRs with relatively complete reporting, and the others within some reporting deficiencies, with scores ranging from 17 points to 26.5 points; the results of AMSTAR 2 showed that 3 SRs belonged to moderate quality level, 10 SRs belonged to low-quality level and 7 SRs being extremely low-quality level; the results of the GRADE system showed that a total of 47 outcomes were reported for the included SRs, three were high-level evidence quality, 16 were medium-level evidence quality, 24 were low-level evidence quality, and four were extremely low-level evidence quality; the results of the Meta-analysis showed that high doses (5-40 billion CFUs per day) of probiotics had a significant effect in the prevention of AAD, but it is too early to conclude the effectiveness and safety of other probiotic drugs for AAD in children, except for Lacticaseibacillus rhamnosus and Saccharomyces boulardii. Conclusion: Current evidence shows that probiotics effectively prevent and treat AAD in children, and the effect of probiotics on pediatric AAD may be a potential dose-response effect. However, the conclusion should be treated with caution due to deficiencies in the methodological, reporting, and evidence quality of the included SRs. Therefore, the methodological, reporting, and evidence quality of relevant SRs still need further improvement. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022362328.
RESUMEN
BACKGROUND: Somatic cell fusion is a process that transfers cytoplasmic and nuclear genes to create new germplasm resources. But our limited understanding of the physiological and molecular mechanisms that shape protoplast responses to fusion. METHOD: We employed flow cytometry, cytology, proteomics, and gene expression analysis to examine the sugarcane (Saccharum spp.) protoplast fusion. RESULTS: Flow cytometry analysis revealed the fusion rate of protoplasts was 1.95%, the FSC value and SSC of heterozygous cells was 1.17-1.47 times higher than that of protoplasts. The protoplasts viability decreased and the MDA increased after fusion. During fusion, the cell membranes were perforated to different degrees, nuclear activity was weakened, while microtubules depolymerized and formed several short rod like structures in the protoplasts. The most abundant proteins during fusion were mainly involved in RNA processing and modification, cell cycle control, cell division, chromosome partition, nuclear structure, extracellular structures, and nucleotide transport and metabolism. Moreover, the expression of key regeneration genes, such as WUS, GAUT, CESA, PSK, Aux/IAA, Cdc2, Cyclin D3, Cyclin A, and Cyclin B, was significantly altered following fusion. PURPOSE AND SIGNIFICANCE: Overall, our findings provide a theoretical basis that increases our knowledge of the mechanisms underlying protoplast fusion.