Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 402: 130845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754559

RESUMEN

Waste-Green Infrastructure Nexus is crucial to mitigate carbon emissions in waste disposal and promote eco-functions of green infrastructure in a circular bio-economy. Our purpose is to verify the feasibility of the nexus via "food waste anaerobic digestion - digestate/digestate biochar - green roof promotion". The results found that food waste digestate and digestate biochar significantly promoted green roof plant growth, evapotranspiration, rainwater retention, runoff reduction, and prevention of nutrient leaching. Digestate treatments were better than digestate biochar for the green roof promotion. The promotion ranked consistently with 20 % digestate > 10 % digestate > 20 % digestate biochar > 10 % digestate biochar > control in stolon growth, leaf emergence, branching of Paspalum vaginatum, green roof establishment, rainwater retention, runoff reduction, and the leaching of nitrogen, phosphorus, potassium. This study demonstrated that food waste could be regenerated to promote urban green infrastructure to form a circular bio-economy by the Waste-Green Infrastructure Nexus.


Asunto(s)
Carbón Orgánico , Alimentos , Eliminación de Residuos/métodos , Conservación de los Recursos Naturales/métodos , Alimento Perdido y Desperdiciado
2.
Angew Chem Int Ed Engl ; 62(3): e202211704, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36349405

RESUMEN

Endohedral metallofullerenes (EMFs) are excellent carriers of rare-earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water-soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three-buckyball system, as a modular platform to develop structurally defined water-soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water-soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior T1 relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio-specific REE drugs.


Asunto(s)
Fulerenos , Ligandos , Medios de Contraste
3.
Org Lett ; 24(35): 6417-6422, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36036909

RESUMEN

The oxidative [4 + 2] reaction of o-phenylenediamine-derived disulfonamides with fullerene C60 and C70 is reported, in which electron-deficient reactants showed high reactivity. The reaction of C70 exhibited unusual regioselectivity, yielding a [5,6]-adduct as the major product, which was characterized by 1H, 13C NMR and single-crystal X-ray diffraction. DFT calculations revealed the reaction is an inverse-electron-demand Diels-Alder (IEDDA) reaction, and the [5,6]-adduct of C70 is a kinetic product.

4.
Pestic Biochem Physiol ; 186: 105156, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973769

RESUMEN

Herbicide-resistant weeds pose a serious threat to world food production. The rapid and widespread development of target-site based resistance limits the application of herbicides. Alopecurus myosuroides Huds. (blackgrass) has spread rapidly in winter wheat regions in China, and the field recommended dose of ALS herbicides no longer controls blackgrass populations in recent years. A highly resistant population TW18(R) was collected in 2018 from Shandong Province. Dose-response assays showed that the TW18 was resistant to mesosulfuron-methyl, flucarbazone-sodium, and imazethapyr, with resistance index values of 5.96, 6.1, and 4.09, respectively. DNA sequencing of the TW18 population revealed a Phe206Tyr (F206Y) mutation in the ALS, which was not yet reported. Blackgrass ALS gene with the F206Y mutation (R gene) was expressed in Arabidopsis and rice. Transgenic studies have shown that both Arabidopsis and rice expressing this R gene have resistance to imazethapyr. However, it did not confer resistance to tribenuron methyl and florasulam in transgenic Arabidopsis. This study showed that the F206Y substitution caused herbicide resistance in blackgrass. To our knowledge, this is the first-reported F206Y mutation of a weed species in the natural environment. Transgenic plants showed this functional site could be utilized to generate imazethapyr-resistant rice to control herbicide-resistant weed damage.


Asunto(s)
Acetolactato Sintasa , Arabidopsis , Herbicidas , Acetolactato Sintasa/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Proteínas de Plantas/genética , Poaceae/genética
5.
Chemosphere ; 289: 133253, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34902388

RESUMEN

Phytoextraction by harvesting dead leaves is a novel cadmium (Cd) phytoremediation strategy in tall fescue (Festuca arundinacea), which provides feasibility for the phytoremediation of Cd-polluted soils and cleaner food production. The highest Cd in dead leaves is the result of Cd accumulation during the process of leaf senescence. However, it is not known the mechanism of Cd accumulation during the leaf senescence, which limits the phytoextraction efficiency of this technology. In this study, we found that the contents of phytochelatins (PC), glutathione (GSH), and non-protein thiols (NPT) were increased during the process of leaf senescence and Cd stress significantly promoted PC, GSH, and NPT. Transcriptome analysis showed that the pathway of glutathione metabolism was significantly enriched in the senescent leaf under Cd stress. 19 genes encoding GST, enzymes catalyzing GSH-Cd binding, were up-regulated in the senescent leaf. The increases of PC, GSH, and NPT in the senescent leaf for Cd-binding could be from the pathways of the protein degradation rather than their synthesis, because genes encoding cysteine protease (catalyzes protein degradation) were significantly promoted, but both GSH synthetase (GS) and PC synthetase (PCS) did not show the significant changes between the young and senescent leaves. Our results indicated that Cd accumulation during the leaf senescence could be the result of the promotion of Cd-binding by PC, GSH, and NPT, which provide insights into the regulatory mechanism and further genetic engineering to promote the phytoextraction efficiency by harvesting dead leaves in tall fescue.


Asunto(s)
Festuca , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Festuca/genética , Hojas de la Planta/química , Senescencia de la Planta , Contaminantes del Suelo/análisis
6.
Org Lett ; 23(22): 8867-8872, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34739256

RESUMEN

The three-component annulation reactions of C60, alkyl isocyanide, and dimethyl acetylenedicarboxylate (DMAD) or unsymmetric alkynes are investigated to afford cyclopent-2-en-1-imino- and ketenimine methano-[60]fullerene derivatives, which, upon hydration in the presence of acid, yield the corresponding fullerene amides. Dimethyl 2,3-pentadienedioate, the allene counterpart of DMAD, and ethyl buta-2,3-dienoate undergo four-component annulation with C60, alkyl isocyanide, and water under similar conditions to yield cyclopentano-[60]fullerene derivatives with similar amide groups.

7.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769033

RESUMEN

Copper (Cu) is an essential element for most living plants, but it is toxic for plants when present in excess. To better understand the response mechanism under excess Cu in plants, especially in flowers, transcriptome sequencing on petunia buds and opened flowers under excess Cu was performed. Interestingly, the transcript level of FIT-independent Fe deficiency response genes was significantly affected in Cu stressed petals, probably regulated by basic-helix-loop-helix 121 (bHLH121), while no difference was found in Fe content. Notably, the expression level of bHLH121 was significantly down-regulated in petals under excess Cu. In addition, the expression level of genes related to photosystem II (PSII), photosystem I (PSI), cytochrome b6/f complex, the light-harvesting chlorophyll II complex and electron carriers showed disordered expression profiles in petals under excess Cu, thus photosynthesis parameters, including the maximum PSII efficiency (FV/FM), nonphotochemical quenching (NPQ), quantum yield of the PSII (ΦPS(II)) and photochemical quenching coefficient (qP), were reduced in Cu stressed petals. Moreover, the chlorophyll a content was significantly reduced, while the chlorophyll b content was not affected, probably caused by the increased expression of chlorophyllide a oxygenase (CAO). Together, we provide new insight into excess Cu response and the Cu-Fe crosstalk in flowers.


Asunto(s)
Cobre/farmacología , Petunia/efectos de los fármacos , Petunia/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Clorofila/genética , Clorofila A/genética , Perfilación de la Expresión Génica/métodos , Hierro/farmacología , Luz , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Complejo de Proteína del Fotosistema I/efectos de los fármacos , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética
8.
Front Plant Sci ; 12: 774943, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819941

RESUMEN

Flavonoids belong to the family of polyphenolic secondary metabolites and contribute to fruit quality traits. It has been shown that MBW complexes (MYB-bHLH-WD40) regulate the flavonoids biosynthesis in different plants, but only a limited number of MBW complexes have been identified in strawberry species in general. In this study, we identified 112 R2R3-MYB proteins in woodland strawberry; 12 of them were found to have potential functions in regulating flavonoids biosynthesis by phylogenetic analysis. qRT-PCR assays showed that FvMYB3, FvMYB9, FvMYB11, FvMYB22, FvMYB64, and FvMYB105 mostly expressed at green stage of fruit development, aligned with proanthocyanidins accumulation; FvMYB10 and FvMYB41 showed higher expression levels at turning and ripe stages, aligned with anthocyanins accumulation. These results suggest that different MYBs might be involved in flavonoids biosynthesis at specific stages. Furthermore, FvMYB proteins were demonstrated to interact with FvbHLH proteins and induce expression from the promoters of CHS2 and DFR2 genes, which encode key enzymes in flavonoids biosynthesis. The co-expression of FvMYB and FvbHLH proteins in strawberry fruits also promoted the accumulation of proanthocyanidins. These findings confirmed and provided insights into the biofunction of MBW components in the regulation of flavonoid biosynthesis in woodland strawberry.

9.
Cell Rep ; 36(13): 109749, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34592147

RESUMEN

Homologous ("canonical") RAB5 proteins regulate endosomal trafficking to lysosomes in animals and to the central vacuole in plants. Epidermal petal cells contain small vacuoles (vacuolinos) that serve as intermediate stations for proteins on their way to the central vacuole. Here, we show that transcription factors required for vacuolino formation in petunia induce expression of RAB5a. RAB5a defines a previously unrecognized clade of canonical RAB5s that is evolutionarily and functionally distinct from ARA7-type RAB5s, which act in trafficking to the vacuole. Loss of RAB5a reduces cell height and abolishes vacuolino formation, which cannot be rescued by the ARA7 homologs, whereas constitutive RAB5a (over)expression alters the conical cell shape and promotes homotypic vacuolino fusion, resulting in oversized vacuolinos. These findings provide a rare example of how gene duplication and neofunctionalization increased the complexity of membrane trafficking during evolution and suggest a mechanism by which cells may form multiple vacuoles with distinct content and function.


Asunto(s)
Forma de la Célula/fisiología , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Petunia , Transporte de Proteínas/genética , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/metabolismo
10.
Angew Chem Int Ed Engl ; 60(48): 25269-25273, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34559455

RESUMEN

New multicomponent reactions involving an isocyanide, terminal or internal alkynes, and endohedral metallofullerene (EMF) Lu3 N@C80 yield metallofulleroids which are characterized by mass-spectrometry, HPLC, and multiple 1D and 2D NMR techniques. Single crystal studies revealed one ketenimine metallofulleroid has ordered Lu3 N cluster which is unusual for EMF monoadducts. Computational analysis, based on crystallographic data, confirm that the endohedral cluster motion is controlled by the position of the exohedral organic appendants. Our findings provide a new functionalization reaction for EMFs, and a potential facile approach to freeze the endohedral cluster motion at relatively high temperatures.

11.
Plant Direct ; 3(1): e00114, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31245756

RESUMEN

We identified three novel members of the R2R3-MYB clade of anthocyanin regulators in the genome of the purple flowering Petunia inflata S6 wild accession, and we called them ANTHOCYANIN SYNTHESIS REGULATOR (ASR). Two of these genes, ASR1 and ASR2, are inactivated by two different single base mutations in their coding sequence. All three of these genes are absent in the white flowering species P. axillaris N and P. parodii, in the red flowering P. exserta, and in several Petunia hybrida lines, including R27 and W115. P. violacea and other P. hybrida lines (M1, V30, and W59) instead harbor functional copies of the ASR genes. Comparative, functional and phylogenic analysis of anthocyanin R2R3-MYB genes strongly suggest that the ASR genes cluster is a duplication of the genomic fragment containing the other three R2R3-MYB genes with roles in pigmentation that were previously defined, the ANTHOCYANIN4-DEEP PURPLE-PURPLE HAZE (AN4-DPL-PHZ) cluster. An investigation of the genomic fragments containing anthocyanin MYBs in different Petunia accessions reveals that massive rearrangements have taken place, resulting in large differences in the regions surrounding these genes, even in closely related species. Yeast two-hybrid assays showed that the ASR proteins can participate in the WMBW (WRKY, MYB, B-HLH, and WDR) anthocyanin regulatory complex by interacting with the transcription factors AN1 and AN11. All three ASRs can induce anthocyanin synthesis when ectopically expressed in P. hybrida lines, but ASR1 appeared to be the most effective. The expression patterns of ASR1 and ASR2 cover several different petunia tissues with higher expression at early stages of bud development. In contrast, ASR3 is only weakly expressed in the stigma, ovary, and anther filaments. The characterization of these novel ASR MYB genes completes the picture of the MYB members of the petunia anthocyanin regulatory MBW complex and suggests possible mechanisms of the diversification of pigmentation patterns during plant evolution.

12.
Angew Chem Int Ed Engl ; 57(43): 14144-14148, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30159975

RESUMEN

An open-cage [60]fullerene was prepared through a multiple-step sequence based on peroxide-mediated cage-opening reactions. Key steps include repeated C60 -sensitized singlet-oxygen oxidation of electron-rich amino enol double bonds to form two lactone and two lactam moieties on the rim of the orifice. Single-crystal X-ray analysis shows that the 22-membered orifice has an ellipsoid shape with the major axis at 6.7 Šand the minor axis at 3.5 Å. Encapsulation of H2 O2 was observed under atmospheric pressure at room temperature. Oxygen is also effectively trapped during the process.

13.
New Phytol ; 215(3): 1102-1114, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28620999

RESUMEN

Silene vulgaris is a metallophyte of calamine, cupriferous and serpentine soils all over Europe. Its metallicolous populations are hypertolerant to zinc (Zn), cadmium (Cd), copper (Cu) or nickel (Ni), compared with conspecific nonmetallicolous populations. These hypertolerances are metal-specific, but the underlying mechanisms are poorly understood. We investigated the role of HMA5 copper transporters in Cu-hypertolerance of a S. vulgaris copper mine population. Cu-hypertolerance in Silene is correlated and genetically linked with enhanced expression of two HMA5 paralogs, SvHMA5I and SvHMA5II, each of which increases Cu tolerance when expressed in Arabidopsis thaliana. Most Spermatophytes, except Brassicaceae, possess homologs of SvHMA5I and SvHMA5II, which originate from an ancient duplication predating the appearance of spermatophytes. SvHMA5II and the A. thaliana homolog AtHMA5 localize in the endoplasmic reticulum and upon Cu exposure move to the plasma membrane, from where they are internalized and degraded in the vacuole. This resembles trafficking of mammalian homologs and is apparently an extremely ancient mechanism. SvHMA5I, instead, neofunctionalized and always resides on the tonoplast, likely sequestering Cu in the vacuole. Adaption of Silene to a Cu-polluted soil is at least in part due to upregulation of two distinct HMA5 transporters, which contribute to Cu hypertolerance by distinct mechanisms.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/genética , Cobre/metabolismo , Cobre/toxicidad , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Silene/metabolismo , Secuencia de Aminoácidos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/química , Filogenia , Proteínas de Plantas/química , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Silene/efectos de los fármacos , Silene/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vacuolas/metabolismo
14.
Cell Rep ; 19(12): 2413-2422, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636930

RESUMEN

It is known that plant cells can contain multiple distinct vacuoles; however, the abundance of multivacuolar cells and the mechanisms underlying vacuolar differentiation and communication among different types of vacuoles remain unknown. PH1 and PH5 are tonoplast P-ATPases that form a heteromeric pump that hyper-acidifies the central vacuole (CV) of epidermal cells in petunia petals. Here, we show that the sorting of this pump and other vacuolar proteins to the CV involves transit through small vacuoles: vacuolinos. Vacuolino formation is controlled by transcription factors regulating pigment synthesis and transcription of PH1 and PH5. Trafficking of proteins from vacuolinos to the central vacuole is impaired by misexpression of vacuolar SNAREs as well as mutants for the PH1 component of the PH1-PH5 pump. The finding that PH1-PH5 and these SNAREs interact strongly suggests that structural tonoplast proteins can act as tethering factors in the recognition of different vacuolar types.


Asunto(s)
Petunia/enzimología , Proteínas de Plantas/fisiología , ATPasas de Translocación de Protón Vacuolares/fisiología , Vacuolas/enzimología , Flores/citología , Flores/enzimología , Fusión de Membrana , Petunia/citología , Epidermis de la Planta/citología , Transporte de Proteínas
15.
Chemistry ; 23(44): 10485-10490, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28504413

RESUMEN

Macrocycle ligands have three or more donor sites. Selective replacement of skeleton carbon atoms by heteroatoms and vacancies in C60 could lead to various macrocycle ligands with a cage-shaped backbone. Theoretical calculations indicate that such C60 -based macrocycle ligands are as stable as C60 thermodynamically according to their similar HOMO-LUMO gaps. The synthesis of these ligands is a challenging task. Nevertheless important progresses have been reported. This concept article focuses on the structures of possible C60 -based macrocycle ligands and related synthetic results.

16.
Nano Lett ; 17(5): 2887-2894, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28399371

RESUMEN

The controlled synthesis of high-quality nitrogen (N) doped single layer graphene on the Ru(0001) surface has been achieved using the N-containing sole precursor azafullerence (C59NH). The synthesis process and doping properties have been investigated on the atomic scale by combining scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements. We find for the first time that the concentration of N-related defects on the N-doped graphene/Ru(0001) surface is tunable by adjusting the dosage of sole precursor and the number of growth cycles. Two primary types of N-related defects have been observed. The predominant bonding configuration of N atoms in the obtained graphene layer is pyridinic N. Our findings indicate that the synthesis from heteroatom-containing sole precursors is a very promising approach for the preparation of doped graphene materials with controlled doping properties.

17.
Angew Chem Int Ed Engl ; 56(9): 2403-2407, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28128516

RESUMEN

Selective addition to the C70 cage divides its π-conjugated system into various smaller π-conjugated systems with enhanced fluorescent properties. Key reactions include chlorination, methoxylation, ozonation, and Bingel or Bingel-Hirsch reactions. The maximum emission wavelength of the C70 multiadducts ranges from 450 to 655 nm. Among the C70 multiadducts, C70 (OMe)8 (C(COOEt)2 )3 showed the highest quantum yield (ΦF =0.18) and the largest Δ[λmax (emission)- λmax (absorption)] (402 nm), with maximum emission at 655 nm.

18.
Front Plant Sci ; 7: 1461, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27733858

RESUMEN

Epimedium L. (Berberidaceae, Ranales), a perennial traditional Chinese medicinal herb, has become a new popular landscape plant for ground cover and pot culture in many countries based on its excellent ornamental characteristics and, distinctive and diverse floral morphology. However, little is known about the molecular genetics of flower development in Epimedium sagittatum. Here, we describe the characterization of EsSVP that encodes a protein sharing 68, 54, and 35% similarity with SVP, AGAMOUS-like 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in Arabidopsis, respectively. Quantitative RT-PCR (qRT-PCR) indicated that EsSVP transcripts were principally found in petiole and leaf tissues, with little expression in roots and flowers and no in fruits. The highest EsSVP expression was observed in leaves. The flowering time of 35S::EsSVP in most Arabidopsis thaliana and in all petunia plants was not affected in both photoperiod conditions, but 35S::EsSVP 5# and 35S::EsSVP 1# Arabidopsis lines induced late and early flowering under long day (LD, 14 h light/10 h dark) and short day (SD, 10 h light/14 h dark) conditions, respectively. The 35S::EsSVP Arabidopsis produced extra secondary inflorescence or floral meristems in the axils of the leaf-like sepals with excrescent trichomes, and leaf-like sepals not able to enclose the inner three whorls completely. Moreover, almost all transgenic Arabidopsis plants showed persistent sepals around the completely matured fruits. Upon ectopic expression of 35S::EsSVP in Petunia W115, sepals were enlarged, sometimes to the size of leaves; corollas were greenish and did not fully open. These results suggest that EsSVP is involved in inflorescence meristem identity and flowering time regulation in some conditions. Although, the SVP homologs might have suffered functional diversification among diverse species between core and basal eudicots, the protein functions are conserved between Arabidopsis/Petunia and Epimedium.

19.
Angew Chem Int Ed Engl ; 55(47): 14590-14594, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27539750

RESUMEN

A 14-membered heterocycle is created on the C60 cage skeleton through a multistep procedure. Key steps involve repeated PCl5 -induced hydroxylamino N-O bond cleavage leading to insertion of nitrogen atoms, and also piperidine-induced peroxo O-O bond cleavage leading to insertion of oxygen atoms. The hetero atoms form one pyrrole, two pyran, and one diazepine rings in conjunction with the C60 skeleton carbon atoms. The fullerene-based macrocycle showed unique reactivities towards fluoride ion and copper salts.

20.
New Phytol ; 211(3): 1092-107, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27214749

RESUMEN

Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes.


Asunto(s)
Ácidos/metabolismo , Evolución Molecular , Proteínas de Transporte de Membrana/metabolismo , Petunia/enzimología , ATPasas de Translocación de Protón/metabolismo , Vacuolas/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cationes , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ATPasas de Translocación de Protón/química , Rosa/genética , Homología de Secuencia de Aminoácido , Vacuolas/metabolismo , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...