Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Front Pharmacol ; 15: 1426972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035992

RESUMEN

Objective: This study evaluates the research developments concerning Rehmanniae Radix in ovarian hypofunction diseases. It explores the processing methods of Rehmanniae Radix, the variations in its compounds before and after processing, the mechanism of Rehmanniae Radix and its active compounds in improving ovarian function, and the advancements in clinical applications of traditional Chinese medicine (TCM) compound that include Rehmanniae Radix. Methods: Comprehensive literature search was conducted using databases such as China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database, National Science and Technology Library, the Pharmacopoeia of the People's Republic of China, Pubmed, and the Web of Science Database. The search utilized the following Medical Subject Headings (MeSH) and keywords: "Rehmanniae Radix," "Drying Rehmannia Root," "Rehmannia glutinosa," "Rehmanniae Radix Praeparata," "Traditional Chinese Medicine Processing," "Pharmacological Effects," "Ovarian Aging," "Diminished ovarian reserve," "Premature ovarian insufficiency," "Premature Ovarian Failure," "Ovarian hypofunction diseases". Results: The ancient Chinese medical books document various processing techniques for Rehmanniae Radix. Contemporary research has identified changes in its compounds processing and the resultant diverse therapeutic effects. When processed into Rehmanniae Radix Praeparata, it is noted for its ability to invigorate the kidney. TCM compound containing Rehmanniae Radix is frequently used to treat ovarian hypofunction diseases, demonstrating significant clinical effectiveness. The key changes in its compounds processing include cyclic dilute ether terpene glycosides, phenylethanol glycosides, sugars, and 5-hydroxymethylfurfural. Its pharmacological action is primarily linked to the improvement of granulosa cell proliferation, antioxidative and anti-aging properties, and modulation of the immune and inflammatory microenvironment. Furthermore, Rehmanniae Radix also offers therapeutic benefits for cardiovascular and cerebrovascular diseases, osteoporosis and cognitive dysfunction caused by low estrogen levels. Thereby Rehmanniae Radix mitigates both the short-term and long-term health risks associated with ovarian hypofunction diseases. Conclusion: Processed Rehmanniae Radix has shown potential to improve ovarian function, and its compound prescriptions have a definite effect on ovarian dysfunction diseases. Therefore Rehmanniae Radix was garnering interest for both basic and clinical research, with promising application prospects as a future therapeutic agent for ovarian hypofunction diseases. However, further studies on its toxicology and the design of standardized clinical trials are necessary to fully establish its efficacy and safety.

2.
Anal Chim Acta ; 1316: 342821, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969423

RESUMEN

The monitoring of biomarkers in wound exudate is of great importance for wound care and treatment, and electrochemical biosensors with high sensitivity are potentially useful for this purpose. However, conventional electrochemical biosensors always suffer from severe biofouling when performed in the complex wound exudate. Herein, an antifouling electrochemical biosensor for the detection of involucrin in wound exudate was developed based on a wound dressing, oxidized bacterial cellulose (OxBC) and quaternized chitosan (QCS) composite hydrogel. The OxBC/QCS hydrogel was prepared using an in-situ chemical oxidation and physical blending method, and the proportion of OxBC and QCS was optimized to achieve electrical neutrality and enhanced hydrophilicity, therefore endowing the hydrogel with exceptional antifouling and antimicrobial properties. The involucrin antibody SY5 was covalently bound to the OxBC/QCS hydrogel to construct the biosensor, and it demonstrated a low limit of detection down to 0.45 pg mL-1 and a linear detection range from 1.0 pg mL-1 to 1.0 µg mL-1, and it was capable of detecting targets in wound exudate. Crucially, the unique antifouling and antimicrobial capability of the OxBC/QCS hydrogel not only extends its effective lifespan but also guarantees the sensing performance of the biosensor. The successful application of this wound dressing, OxBC/QCS hydrogel for involucrin detection in wound exudate demonstrates its promising potential in wound healing monitoring.


Asunto(s)
Técnicas Biosensibles , Celulosa , Quitosano , Técnicas Electroquímicas , Oxidación-Reducción , Quitosano/química , Celulosa/química , Incrustaciones Biológicas/prevención & control , Humanos , Hidrogeles/química , Exudados y Transudados/química , Límite de Detección
3.
Anal Chim Acta ; 1318: 342953, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067928

RESUMEN

BACKGROUND: Developing biosensors with antifouling properties is essential for accurately detecting low-concentration biomarkers in complex biological matrix, which is imperative for effective disease diagnosis and treatment. Herein, an antifouling electrochemical aptasensor qualifying for probing targets in human serum was explored based on newly-devised peptides that could form inverted U-shaped structures with long-term stability. RESULTS: The inverted U-shaped peptides (U-Pep) with two terminals of thiol groups grafted onto the Au-modified electrode showcase superior antifouling properties in terms of high stability against enzymatic hydrolysis and long acting against biofouling in actual biofluids. The construction of the outlined antifouling electrochemical aptasensor just involved the fabrication of Au-deposited poly(3,4 ethylenedioxythiophene) (Au/PEDOT) modified electrode, followed by one-step co-incubation in the peptides and the aptamer probes with the Au/PEDOT electrode. Taking a typical biomarker of alpha-fetoprotein (AFP) for detection, this elegant antifouling aptasenor demonstrated a nice response for probing the target AFP with a low detection limit of 0.27 pg/mL and a wide linear scope of 1.0 pg/mL to 1.0 µg/mL, and furthermore qualified for assaying of AFP in human serum samples with satisfactory accuracy and feasibility. SIGNIFICANCE: This engineering strategy of U-Pep with long-lasting antifouling efficacy opens a new horizon for high-performance antifouling biosensors suitable for detection in complex bifluids, and it could spark more inspiration for a follow-up exploration of other featured antifouling biomaterials.


Asunto(s)
Aptámeros de Nucleótidos , Incrustaciones Biológicas , Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Péptidos , Humanos , Técnicas Biosensibles/métodos , Péptidos/química , Oro/química , Aptámeros de Nucleótidos/química , Incrustaciones Biológicas/prevención & control , Electrodos , Polímeros/química , alfa-Fetoproteínas/análisis , Límite de Detección , Compuestos Bicíclicos Heterocíclicos con Puentes
4.
Adv Sci (Weinh) ; 11(29): e2400023, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38828688

RESUMEN

The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.


Asunto(s)
Progresión de la Enfermedad , Glioma , Mutación , ARN Nucleolar Pequeño , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patología , Ratones , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Animales , Mutación/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Modelos Animales de Enfermedad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas Portadoras
5.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745192

RESUMEN

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


Asunto(s)
Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Proteína 28 que Contiene Motivos Tripartito , Animales , Humanos , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Proteína 28 que Contiene Motivos Tripartito/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38818861

RESUMEN

The flow cytometry-based evaluation of TRBC1 expression has been demonstrated as a rapid and specific method for detecting T-cell clones in sCD3-positive TCRαß+ mature T-cell lymphoma. The aim of the study was to validate the utility of surface (s) TRBC1 and cytoplastic (cy) TRBC1 assessment in detecting clonality of sCD3-negative peripheral T-cell lymphomas (PTCLs), as well as exploring the existence and characteristics of sCD3-negative clonal T-cell populations with uncertain significance (T-CUS). Evaluation of sTRBC1 and cyTRBC1 were assessed on 61 samples from 37 patients with sCD3-negative PTCLs, including 26 angioimmunoblastic T-cell lymphoma (AITL) patients and 11 non-AITL patients. The sCD3-negative T-CUS were screened from 1602 patients without T-cell malignancy and 100 healthy individuals. Additionally, the clonality of cells was further detected through T-cell gene rearrangement analysis. We demonstrated the monotypic expression patterns of cyTRBC1 in all sCD3-negative PTCLs. Utilizing the cyTRBC1 evaluation assay, we identified a novel and rare subtype of sCD3-negative T-CUS for the first time among 13 out of 1602 (0.8%) patients without T-cell malignancy. The clonality of these cells was further confirmed through T-cell gene rearrangement analysis. This subset exhibited characteristics such as sCD3-cyCD3 + CD4 + CD45RO+, closely resembling AITL rather than non-AITL. Further analysis revealed that sCD3-negative T-CUS exhibited a smaller clone size in the lymph node and mass specimens compared to AITL patients. However, the clone size of sCD3-negative T-CUS was significantly lower than that of non-AITL patients in both specimen groups. In conclusion, we validated the diagnostic utility of cyTRBC1 in detecting sCD3-negative T-cell clonality, provided a comprehensive analysis of sCD3-negative T-CUS, and established a framework and provided valuable insights for distinguishing sCD3-negative T-CUS from sCD3-negative PTCLs based on their phenotypic properties and clone size.

7.
Mol Cancer ; 23(1): 60, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520019

RESUMEN

BACKGROUND: Cancer stem-like cell is a key barrier for therapeutic resistance and metastasis in various cancers, including breast cancer, yet the underlying mechanisms are still elusive. Through a genome-wide lncRNA expression profiling, we identified that LINC00115 is robustly upregulated in chemoresistant breast cancer stem-like cells (BCSCs). METHODS: LncRNA microarray assay was performed to document abundance changes of lncRNAs in paclitaxel (PTX)-resistant MDA-MB-231 BCSC (ALDH+) and non-BCSC (ALDH-). RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to determine the binding proteins of LINC00115. The clinical significance of the LINC00115 pathway was examined in TNBC metastatic lymph node tissues. The biological function of LINC00115 was investigated through gain- and loss-of-function studies. The molecular mechanism was explored through RNA sequencing, mass spectrometry, and the CRISPR/Cas9-knockout system. The therapeutic potential of LINC00115 was examined through xenograft animal models. RESULTS: LINC00115 functions as a scaffold lncRNA to link SETDB1 and PLK3, leading to enhanced SETDB1 methylation of PLK3 at both K106 and K200 in drug-resistant BCSC. PLK3 methylation decreases PLK3 phosphorylation of HIF1α and thereby increases HIF1α stability. HIF1α, in turn, upregulates ALKBH5 to reduce m6A modification of LINC00115, resulting in attenuated degradation of YTHDF2-dependent m6A-modified RNA and enhanced LINC00115 stability. Thus, this positive feedback loop provokes BCSC phenotypes and enhances chemoresistance and metastasis in triple-negative breast cancer. SETDB1 inhibitor TTD-IN with LINC00115 ASO sensitizes PTX-resistant cell response to chemotherapy in a xenograft animal model. Correlative expression of LINC00115, methylation PLK3, SETDB1, and HIF1α are prognostic for clinical triple-negative breast cancers. CONCLUSIONS: Our findings uncover LINC00115 as a critical regulator of BCSC and highlight targeting LINC00115 and SETDB1 as a potential therapeutic strategy for chemotherapeutic resistant breast cancer.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Animales , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Mama/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Paclitaxel/farmacología , Modelos Animales de Enfermedad , Células Madre Neoplásicas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Quinasas Tipo Polo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo
8.
Sci Rep ; 14(1): 5174, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431718

RESUMEN

The electromagnetic force used in electromagnetic forming is mainly divided into attraction and repulsion. Dual-coil attractive electromagnetic forming can be used in the field of sheet pit repair. However, the magnetic field and eddy current generated by the two coils compete with each other, and the energy utilization rate is low. Therefore, a compensation coil is introduced, and an electromagnetic forming scheme of a three-coil dual-power sheet based on mixed force is proposed and verified by simulation. It is found that the three-coil mixed force can effectively improve the competition between the magnetic field and eddy current. The loading of the mixing force is not a simple superposition of attraction and repulsion, but the mutual promotion of the two. The forming displacement of the three-coil mixed force forming scheme is 582% higher than that of the dual-coil attraction forming scheme, and 89% higher than that of the attract first and then repel forming scheme. The forming effect of the three-coil mixing force is related to the number of turns of the compensation coil. The research results can improve the energy utilization rate of electromagnetic forming and provide a new idea for the loading scheme of electromagnetic forming force field.

9.
J Agric Food Chem ; 72(8): 4426-4432, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38353981

RESUMEN

A pair of positively charged stable isotope labeling (SIL) agents, (4-carbonochloridoylphenyl)-trimethylazanium iodide (d0-CCPTA) and d6-CCPTA, were designed and synthesized. These agents were employed in the precolumn labeling of advanced glycation end products (AGEs) within 5 min under mild conditions. Through derivatization, the mass spectrometry response of the AGEs was enhanced by approximately 2 orders of magnitude. The detection and quantitation limits were in the ranges of 3.1-7.1 and 10.0-23.7 ng/kg, respectively. The recoveries were in the range of 90.1-94.3%, and the matrix effect ranged from -6.6 to -3.5%. CCPTA produced "CCPTA-specific production ions", and all analytes were analyzed by common multiple reaction monitoring (MRM) parameters. The common MRM parameters were applied to the semitarget analysis of 41 types of AGE candidates in the absence of standards, with 13 AGEs identified.


Asunto(s)
Productos Finales de Glicación Avanzada , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Marcaje Isotópico , Estándares de Referencia
10.
Anal Chim Acta ; 1287: 342154, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182356

RESUMEN

Wearable sweat sensors with stretch capabilities and robust performances are desired for continuous monitoring of human health, and it remains a challenge for sweat sensors to detect targets reliably in both static and dynamic states. Herein, a flexible sweat sensor was created using a cost-effective approach involving the utilization of three-dimensional graphene foam and polydimethylsiloxane (PDMS). The flexible electrochemical sensor was fabricated based on PDMS and Pt/Pd nanoparticles modified 3D graphene foam for the detection of uric acid in sweat. Pt/Pd nanoparticles were electrodeposited on the graphene foam to markedly enhance the electrocatalytic activity for uric acid detection. The graphene foam with excellent electrical property and high porosity, and PDMS with an ideal mechanical property endow the sensing device with high stretchability (tolerable strain up to 110 %), high sensitivity (0.87 µA µM-1 cm-2), and stability (remaining unchanged for more than 5000 cycles) for daily wear. To eliminate possible interferences, the wearable sensor was designed with dual working electrodes, and their response difference ensured reliable and accurate detection of targets. This strategy of constructing sweat sensors with dual working electrodes based on the flexible composite material represents a promising way for the development of robust wearable sensing devices.


Asunto(s)
Grafito , Dispositivos Electrónicos Vestibles , Humanos , Sudor , Ácido Úrico , Electrodos
11.
Food Chem ; 442: 138531, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271910

RESUMEN

The consumption of tangerine peel (Citri reticulatae pericarpium, CRP) has been steadily increasing worldwide due to its proven health benefits and sensory characteristics. However, the price of CRP varies widely based on its origin, variety, and aging time, which has led many manufacturers to offer inferior products by exploiting the sensory similarity of CRP, seriously undermining consumers' interests. Therefore, it is essential to identify the authenticity of the CRP. In this study, the research progress on the authenticity of CRP from different origins, years and varieties over the past 10 years and the application and prospects of the main technologies and techniques were reviewed. The advantages and disadvantages of the commonly used methods were also summarized and compared. Mass spectrometry-based and spectroscopy-based techniques are the most commonly used methods for analyzing CRP authenticity. However, designing fast, non-destructive and green methods for identifying CRP authenticity would be the future trend.

12.
J Sci Food Agric ; 104(7): 4028-4038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252689

RESUMEN

BACKGROUND: Enzymatic crosslinking is a method that can be used to modify Inca peanut albumin (IPA) using polyphenols, and provides desirable functionalities; however, the effect of polyphenol structures on conjugate properties is unclear. In this study, we selected four polyphenols with different numbers of phenolic hydroxyl groups [para-hydroxybenzoic acid (HBA), protocatechuic acid (PCA), gallic acid (GA), and epigallocatechin gallate (EGCG)] for covalent modification of IPA by enzymatic crosslinking, and explored the structure-function changes of the IPA-polyphenol conjugates. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed that laccase successfully promoted covalent crosslinking of IPA with polyphenols, with the order of degree of conjugation as EGCG > GA > PCA > HBA, the IPA-EGCG conjugate showed the highest polyphenol binding equivalents (98.35 g kg-1 protein), and a significant reduction in the content of free amino, sulfhydryl, and tyrosine group. The oxidation of polyphenols by laccase forms quinone or semiquinone radicals that are covalently crosslinked to the reactive groups of IPA, leading to significant changes in the secondary and tertiary structures of IPA, with spherical structures transforming into dense lamellar structures. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability and emulsification stability of IPA-EGCG conjugates improved by almost 6-fold and 2.7-fold, respectively, compared with those of unmodified IPA. CONCLUSION: These data suggest that the higher the number of polyphenol hydroxyl groups, the higher the degree of IPA-polyphenol conjugation; additionally, enzymatic crosslinking can significantly improve the functional properties of IPA. © 2024 Society of Chemical Industry.


Asunto(s)
Catequina , Polifenoles , Polifenoles/química , Arachis/metabolismo , Lacasa/metabolismo , Fenoles , Antioxidantes/química , Catequina/química , Catálisis , Ácido Gálico , Albúminas
13.
Small ; 20(4): e2305866, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712131

RESUMEN

The eco-friendliness, safety, and affordability of aqueous potassium batteries (AKIBs) have made them popular for large-scale energy storage devices. However, the cycling and rate performance of research materials, particularly cobalt hexacyanoferrate, have yet to meet satisfactory standards. Herein, a room-temperature drafted K1.66 Fe0.25 Co0.75 [Fe(CN)6 ]·0.83H2 O (KFCHCF) sample is reported using an in situ substitution strategy. A higher concentration of ferrocyanide ions decreases the water content and increases the potassium content, while citric acid works as a chelating agent and is responsible for Fe-substitution in the KFCHCF sample. The resultant KFCHCF sample exhibits good rate performance, and about 97% and 90.6% of discharge capacity are conserved after 400 and 1000 cycles at 100 and 200 mA g-1 , respectively. The full cell using the KFCHCF cathode and 1,4,5,8-naphthalenetetracarboxylic dianhydride-derived polyimide (PNTCDA) anode maintains ≈74.93% and 74.35% of discharge capacity at 200 mA g-1 and 1000 mA g-1 for 1000 and >10,000 cycles, respectively. Furthermore, ex situ characterizations demonstrate the high reversibility of K-ions and structural stability during the charge-discharge process. Such high performance is attributed to the fast K-ion migration and crystal structure stabilization caused by in situ Fe-substitution in the KFCHCF sample. Other hexacyanoferrates can be synthesized using this method and used in grid-scale storage systems.

14.
Int J Biol Macromol ; 258(Pt 2): 128992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151085

RESUMEN

The emulsifying properties of emulsions are significantly influenced by the structural properties of octenyl succinic anhydride (OSA) starch. The purpose of this work was to elucidate the effect of the structure of OSA starch on its performance as an emulsifier to stabilize Pickering high-internal-phase emulsions (HIPEs). The degrees of substitution (DS) of the three OSA starches were 0.0137, 0.0177 and 0.0236, and their degrees of branching (DB) were 13.96 %, 14.20 % and 14.32 % measured by 1H NMR, which were sequentially labeled as OSA1, OSA2, and OSA3. The OSA3 starch with higher DS and DB had a lower critical micelle concentration (CMC) (0.11 mg/mL). Its emulsification activity (EAI) and emulsion stability (ES) were 61.8 m2/g and 72.5 min, respectively, which were higher than OSA1 and OSA2 starches. The contact angle of the three OSA starches increased from 45.35° to 80.03° with increasing DS and DB. Therefore, it is hypothesized that OSA3 starches have better emulsification properties. The results of physical stability of HIPEs confirmed the above results. These results indicated that DS and DB have a synergistic effect on emulsion properties, and OSA starch with higher DS and DB values were more conducive to the construction of stable HIPEs systems.


Asunto(s)
Almidón , Anhídridos Succínicos , Emulsiones/química , Anhídridos Succínicos/química , Tamaño de la Partícula , Almidón/química
15.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38091994

RESUMEN

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Asunto(s)
Encéfalo , Transcriptoma , Humanos , Neuronas Dopaminérgicas , Neuronas GABAérgicas , Mesencéfalo , Neocórtex , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo
16.
Food Chem X ; 20: 100898, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144730

RESUMEN

This study aimed to explore effects of indica rice addition, rice soaking time and rice soup addition on total sugar and alcohol content of semi-dry Hakka rice wine (HRW) and compare its difference in physicochemical properties and volatiles with traditional sweet rice wine (TSRW) via HPLC, GC-MS and E-tongue. The optimal fermentation conditions of semi-dry HRW were 50 % indica rice addition, 12 h rice soaking time and 85 % rice soup addition. The total sugar (16.13 mg/mL) of semi-dry HRW was significantly lower than that of TSRW (135.79 mg/mL), especially the trehalose, glucose, sucrose and maltose. Its alcohol content was significantly higher than that of TSRW. There were significant differences in volatile components between semi-dry HRW and TSRW, especially esters, alcohols and ketones, but no significant differences in organic acids and amino acids. Results obtained could provide reference data for improving the fermentation process and quality of semi-dry HRW.

18.
Materials (Basel) ; 16(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687521

RESUMEN

As an important energy conversion component in electromagnetic-forming technology, the coil is subjected to great internal stress and is easy to break. The geometric structure and winding process of the forming coil draw on the research results of pulsed magnets. However, the two use conditions are different. It is very important to clarify the force difference between the two for the design of the forming coil. In this paper, the numerical model of an aluminum alloy (AA1060-O) is established, and the difference in force between the pulse magnet and forming coil with the same size in time and space under different working conditions is analyzed. A two-dimensional fully coupled finite element model consisting of circuit, magnetic field, and solid mechanics is established and used to determine the key parts of the coil force. It is found that the von Mises stress of the forming coil is greater than that of the pulsed magnet under the same circuit parameters and geometric structure. In the electromagnetic forming of the tube, the glass fiber is subjected to a large stress. In addition, the stress of glass fiber under the condition of tube necking is about 2 times that of pulsed magnet. When the voltage is increased, the failure of the middle part of the glass fiber causes the coil to break. In the electromagnetic forming of the sheet, the coil skeleton is subjected to large stress, and its upper end failure causes the coil to break. Therefore, new design ideas for forming coils under different working conditions are proposed.

19.
Foods ; 12(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569185

RESUMEN

The physicochemical properties, amino acids, and volatile metabolites of 20 types of Guangdong Hakka Huangjiu were systematically compared in this study. Lower sugar contents were detected in LPSH, ZJHL-1, and GDSY-1, but the total sugar contents of the other types of Guangdong Hakka Huangjiu were more than 100 g/L (which belonged to the sweet type). Among them, a lower alcohol content was found in GDSY-1 (8.36 %vol). There was a significant difference in the organic acid and amino acid composition among the 20 Guangdong Hakka Huangjiu samples, especially the amino acid composition. However, bitter amino acids as the major amino acids accounted for more than 50% of the total amino acids. A substantial variation in volatile profiles was also observed among all types of Guangzhou Hakka Huangjiu. Interestingly, MZSK-1 had different volatile profiles from other Guangzhou Hakka Huangjiu samples. According to gas chromatography olfactometry (GC-O), most of the aroma-active ingredients identified in Guangdong Hakka Huangjiu were endowed with a pleasant aroma of "fruity".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...