Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(10): 3661-3669, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455005

RESUMEN

Ferroelastic materials have gained widespread attention as promising candidates for mechanical switches, shape memory, and information processing. Their phase-transition mechanisms usually originate from conventional order-disorder and/or displacive types, while those involving dynamic coordination bonds are still scarce. Herein, based on a strategic molecular design of organic cations, we report three new polar hybrid crystals with a generic formula of AA'RbBiCl6 (A = A' = Me3SO+ for 1; A = Me3SO+ and A' = Me4N+ for 2; A = A' = Me3NNH2+ for 3). Their A-site cations link to the [RbBiCl6]n2n- inorganic framework with lon topology through Rb-O/N coordination bonds, while their significantly different interactions between A'-site cations and inorganic frameworks provide distinct phase-transition behaviour. In detail, the strongly coordinative A'-site Me3SO+ cations prevent 1 from a structural phase transition, while coordinatively free A'-site Me4N+ cations trigger a conventional order-disorder ferroelastic transition at 247 K in 2, accompanied by a latent heat of 0.63 J g-1 and a usual "high → low" second-harmonic-generation (SHG) switch. Interestingly, the A'-site Me3NNH2+ cations in 3 reveal unusual dynamic coordination bonds, driving a high-temperature ferroelastic transition at 369 K with a large latent heat of 18.34 J g-1 and an unusual "low → high" SHG-switching behaviour. This work provides an effective molecular assembly strategy to establish dynamic coordination bonds in a new type of host-guest model and opens an avenue for designing advanced ferroelastic multifunctional materials.

2.
Chem Sci ; 13(47): 14124-14131, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36540826

RESUMEN

Molecular-based ferroic phase-transition materials have attracted increasing attention in the past decades due to their promising potential as sensors, switches, and memory. One of the long-term challenges in the development of molecular-based ferroic materials is determining how to promote the ferroic phase-transition temperature (T c). Herein, we present two new hexagonal molecular perovskites, (nortropinonium)[CdCl3] (1) and (nortropinium)[CdCl3] (2), to demonstrate a simple design principle for obtaining ultrahigh-T c ferroelastic phase transitions. They consist of same host inorganic chains but subtly different guest organic cations featuring a rigid carbonyl and a flexible hydroxyl group in 1 and 2, respectively. With stronger hydrogen bonds involving the carbonyl but a relatively lower decomposition temperature (T d, 480 K), 1 does not exhibit a crystalline phase transition before its decomposition. The hydroxyl group subtly changes the balance of intermolecular interactions in 2via reducing the attractive hydrogen bonds but increasing the repulsive interactions between adjacent organic cations, which finally endows 2 with an enhanced thermal stability (T d = 570 K) and three structural phase transitions, including two ferroelastic phase transitions at ultrahigh T c values of 463 K and 495 K, respectively. This finding provides important clues to judiciously tuning the intermolecular interactions in hybrid crystals for developing high-T c ferroic materials.

3.
J Am Chem Soc ; 141(45): 17995-17999, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31647653

RESUMEN

Hydrogen is regarded as an attractive alternative energy carrier due to its high gravimetric energy density and only water production upon combustion. However, due to its low volumetric energy density, there are still some challenges in practical hydrogen storage and transportation. In the past decade, using chemical bonds of liquid organic molecules as hydrogen carriers to generate hydrogen in situ provided a feasible method to potentially solve this problem. Research efforts on liquid organic hydrogen carriers (LOHCs) seek practical carrier systems and advanced catalytic materials that have the potential to reduce costs, increase reaction rate, and provide a more efficient catalytic hydrogen generation/storage process. In this work, we used methanol as a hydrogen carrier to release hydrogen in situ with the single-site Pt1/CeO2 catalyst. Moreover, in this reaction, compared with traditional nanoparticle catalysts, the single site catalyst displays excellent hydrogen generation efficiency, 40 times higher than 2.5 nm Pt/CeO2 sample, and 800 times higher compared to 7.0 nm Pt/CeO2 sample. This in-depth study highlights the benefits of single-site catalysts and paves the way for further rational design of highly efficient catalysts for sustainable energy storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...