Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 899776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721216

RESUMEN

Osteoporosis is a major health problem in the elderly. Almost every bone can fracture due to the increased bone fragility in osteoporosis, posing a major challenge to public health. 12-Deoxyphorbol-13-hexadecanoate (DHD), one of the main bioactive components of Stellera chamaejasme L. (Lang Du), is considered to have antitumor, antibacterial, and antifungal properties. However, the role of DHD in osteoporosis is still elusive. In this study, we demonstrated for the first time that DHD inhibits the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption in a dose- and time-dependent manner without exhibiting cytotoxicity in vitro. Mechanistically, we found that DHD not only represses the expression of osteoclasts marker genes by suppressing RANKL-induced mitogen-activated protein kinase (MAPK) and calcium signaling pathways but also scavenges reactive oxygen species (ROS) through enhancing cytoprotective enzymes expression. Furthermore, DHD inhibits the activation of nuclear factor of activated T cells 1 (NFATc1) during RANKL-induced osteoclasts formation. Preclinical studies revealed that DHD protects against bone loss in ovariectomy (OVX) mice. In sum, our data confirmed that DHD could potentially inhibit osteoclastogenesis by abrogating RANKL-induced MAPK, calcium, and NFATc1 signaling pathways and promoting the expression of ROS scavenging enzymes, thereby preventing OVX-induced bone loss. Thus, DHD may act as a novel therapeutic agent to manage osteoporosis.

2.
Biomolecules ; 11(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34572508

RESUMEN

Nicotinamide N-methyltransferase (NNMT) plays multiple roles in improving the aggressiveness of colorectal cancer (CRC) and enhancing resistance to 5-Fluorouracil (5-FU), making it an attractive therapeutic target. Curcumin (Cur) is a promising natural compound, exhibiting multiple antitumor effects and potentiating the effect of 5-FU. The aim of the present study is to explore the effect of Cur on attenuating NNMT-induced resistance to 5-FU in CRC. A panel of CRC cell lines with different NNMT expressions are used to characterize the effect of Cur. Herein, it is observed that Cur can depress the expression of NNMT and p-STAT3 in CRC cells. Furthermore, Cur can induce inhibition of cell proliferation, G2/M phase cell cycle arrest, and reactive oxygen species (ROS) generation, especially in high-NNMT-expression CRC cell lines. Cur can also re-sensitize high-NNMT-expression CRC cells to 5-FU both in vitro and in vivo. In summary, it is proposed that Cur can reverse NNMT-induced cell proliferation and 5-FU resistance through ROS generation and cell cycle arrest. Given that Cur has long been used, we suppose that Cur is a promising anticancer drug candidate with minimal side effects for human CRC therapy and can attenuate NNMT-induced resistance to 5-FU.


Asunto(s)
Puntos de Control del Ciclo Celular , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Curcumina/farmacología , Fluorouracilo/farmacología , Nicotinamida N-Metiltransferasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Concentración 50 Inhibidora , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Oncol Rep ; 45(6)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33907844

RESUMEN

Chemoresistance is the main cause of poor prognosis in colorectal cancer (CRC). Nicotinamide N­methyltransferase (NNMT) is a metabolic enzyme that is upregulated in various tumor types. It has been reported that NNMT inhibits apoptosis and enhances resistance to 5­fluorouracil (5­Fu) via inhibition of the apoptosis signal regulating kinase 1 (ASK1)­p38 MAPK pathway in CRC cells. A natural product library was screened, and it was found that vanillin, also known as 4­hydroxy­3­methoxybenzaldehyde, a plant secondary metabolite found in several essential plant oils, mainly Vanilla planifolia, Vanilla tahitensis, and Vanilla pompon, may be a promising anticancer compound targeted to NNMT. The aim of the present study was to explore the effect of vanillin on promoting apoptosis and attenuating NNMT­induced resistance to 5­Fu in CRC. Lentiviral vectors of short hairpin RNA and small interfering RNA were transfected into HT­29 cells to construct NNMT­knockdown HT­29 cell lines. Vectors containing an open reading frame of NNMT were stably transfected into SW480 cells to induce NNMT overexpression in SW480 cell lines. Vanillin was found to inhibit the mRNA and protein expression levels of NNMT following the inhibition of NNMT activity in HT­29 cell lines. Vanillin was able to reverse NNMT­induced increased cell proliferation, decreased cell apoptosis and resistance to 5­Fu by inhibiting NNMT expression. Furthermore, it increased cell apoptosis by activating the ASK1­p38 MAPK pathway, which could be inhibited by NNMT. In addition, vanillin increased cell apoptosis by promoting mitochondrial damage and reactive oxygen species. In vivo, the combination of vanillin with 5­Fu yielded a notable synergy in inhibiting tumor growth and inducing apoptosis. Considering that vanillin is an important flavor and aromatic component used in foods worldwide, vanillin is deemed to be a promising anticancer candidate by inhibiting NNMT and may attenuate NNMT­induced resistance to 5­Fu in human CRC therapy with few side effects.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Benzaldehídos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Benzaldehídos/uso terapéutico , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo/uso terapéutico , Humanos , Nicotinamida N-Metiltransferasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
ACS Macro Lett ; 2(10): 845-848, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35607001

RESUMEN

While amphiphilic block copolymers have demonstrated their utility for a range of practical applications, the behavior of cyclic block copolymers remains largely unexplored due to limited synthetic access. To investigate their micelle formation, biocompatible cyclic amphiphilic poly(ethylene glycol)-polycaprolactone, c-(PEG-PCL), was synthesized by a combination of ring-opening polymerization (ROP) and click chemistry. In addition, exactly analogous linear block copolymers have been prepared as a control sample to elucidate the role of polymer architecture in their self-assembly and acid-catalyzed degradation.

5.
Chem Commun (Camb) ; 47(32): 9036-8, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21603694

RESUMEN

The surface modification of deep-cavity cavitands has been demonstrated by using the azide-alkyne "click" coupling to attach dendritic macromolecules or linear polymers onto their periphery. The resulting set of macromolecular cavitands exhibited tuneable solubility yet retained the ability to encapsulate guest molecules.


Asunto(s)
Alquinos/química , Azidas/química , Química Clic/métodos , Éteres Cíclicos/química , Resorcinoles/química , Solubilidad , Propiedades de Superficie
6.
J Mass Spectrom ; 45(6): 587-611, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20527028

RESUMEN

Recent advances in the resolving power of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) enable the detailed characterization of linear homopolymers, and in particular provide invaluable data for the determination of their end-group functionalities. With the growing importance of macromolecular coupling reactions in building complex polymer architectures, the ability to accurately monitor end-group transformations is becoming increasingly important for synthetic polymer chemists. This tutorial demonstrates the application of MALDI-TOF MS in determining both end-group functionalities and their transformations for linear homopolymers. Examples of both polycaprolactone and polystyrene are examined, and the strengths and weaknesses of various approaches to data analysis are given.


Asunto(s)
Polímeros/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Calibración , Modelos Lineales , Poliésteres/química , Poliestirenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA