Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361825

RESUMEN

The anterior cingulate cortex (ACC) is particularly critical for pain information processing. Peripheral nerve injury triggers neuronal hyper-excitability in the ACC and mediates descending facilitation to the spinal dorsal horn. The mechanically gated ion channel Piezo1 is involved in the transmission of pain information in the peripheral nervous system. However, the pain-processing role of Piezo1 in the brain is unknown. In this work, we found that spared (sciatic) nerve injury (SNI) increased Piezo1 protein levels in inhibitory parvalbumin (PV)-expressing interneurons (PV-INs) but not in glutaminergic CaMKⅡ+ neurons, in the bilateral ACC. A reduction in the number of PV-INs but not in the number of CaMKⅡ+ neurons and a significant reduction in inhibitory synaptic terminals was observed in the SNI chronic pain model. Further, observation of morphological changes in the microglia in the ACC showed their activated amoeba-like transformation, with a reduction in process length and an increase in cell body area. Combined with the encapsulation of Piezo1-positive neurons by Iba1+ microglia, the loss of PV-INs after SNI might result from phagocytosis by the microglia. In cellular experiments, administration of recombinant rat TNF-α (rrTNF) to the BV2 cell culture or ACC neuron primary culture elevated the protein levels of Piezo1 and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3). The administration of the NLRP3 inhibitor MCC950 in these cells blocked the rrTNF-induced expression of caspase-1 and interleukin-1ß (key downstream factors of the activated NLRP3 inflammasome) in vitro and reversed the SNI-induced Piezo1 overexpression in the ACC and alleviated SNI-induced allodynia in vivo. These results suggest that NLRP3 may be the key factor in causing Piezo1 upregulation in SNI, promoting an imbalance between ACC excitation and inhibition by inducing the microglial phagocytosis of PV-INs and, thereby, facilitating spinal pain transmission.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratas , Animales , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Parvalbúminas/metabolismo , Giro del Cíngulo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuralgia/metabolismo , Regulación hacia Arriba , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratas Sprague-Dawley , Interneuronas/metabolismo
2.
Biomaterials ; 288: 121698, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36038422

RESUMEN

Diabetic ulcers (DUs), a devastating complication of diabetes, are intractable for limited effective interventions in clinic. Based on the clinical samples and bioinformatic analysis, we found lower level of CCN1 in DU individuals. Considering the accelerated proliferation effect in keratinocytes, we propose the therapeutic role of CCN1 supplementation in DU microenvironment. To address the challenge of rapid degradation of CCN1 in protease-rich diabetic healing condition, we fabricated a nanoformulation of CCN1 (CCN1-NP), which protected CCN1 from degradation and significantly raised CCN1 intracellular delivery efficiency to 6.2-fold. The results showed that the intracellular CCN1 exhibited a greater anti-inflammatory and proliferative/migratory activities once the extracellular signal of CCN1 was blocked in vitro. The nanoformulation unveils a new mechanism that CCN1 delivered into cells interacted with Eukaryotic translation initiation factor 3 subunit A (EIF3A) to downregulate autophagy-related 7 (ATG7). Furthermore, topical application of CCN1-NP had profound curative effects on delayed wound healing in diabetes both in vitro and in vivo. Our results illustrate a novel mechanism of intracellular EIF3A/CCN1/ATG7 axis triggered by nanoformulation and the therapeutic potential of CCN1-NP for DU management.


Asunto(s)
Proteína 61 Rica en Cisteína , Diabetes Mellitus , Sistema de Administración de Fármacos con Nanopartículas , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/farmacología , Diabetes Mellitus/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Queratinocitos/metabolismo , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Nanopartículas , Cicatrización de Heridas/fisiología
3.
Front Immunol ; 13: 843684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651617

RESUMEN

Background: Candida albicans infections are particularly prevalent in immunocompromised patients. Even with appropriate treatment with current antifungal drugs, the mortality rate of invasive candidiasis remains high. Many positive results have been achieved in the current vaccine development. There are also issues such as the vaccine's protective effect is not persistent. Considering the functionality and cost of the vaccine, it is important to develop safe and efficient new vaccines with long-term effects. In this paper, an antifungal nanovaccine with Polyethyleneimine (PEI) as adjuvant was constructed, which could elicit more effective and long-term immunity via stimulating B cells to differentiate into long-lived plasma cells. Materials and Methods: Hsp90-CTD is an important target for protective antibodies during disseminated candidiasis. Hsp90-CTD was used as the antigen, then introduced SDS to "charge" the protein and added PEI to form the nanovaccine. Dynamic light scattering and transmission electron microscope were conducted to identify the size distribution, zeta potential, and morphology of nanovaccine. The antibody titers in mice immunized with the nanovaccine were measured by ELISA. The activation and maturation of long-lived plasma cells in bone marrow by nanovaccine were also investigated via flow cytometry. Finally, the kidney of mice infected with Candida albicans was stained with H&E and PAS to evaluate the protective effect of antibody in serum produced by immunized mice. Results: Nanoparticles (NP) formed by Hsp90-CTD and PEI are small, uniform, and stable. NP had an average size of 116.2 nm with a PDI of 0.13. After immunizing mice with the nanovaccine, it was found that the nano-group produced antibodies faster and for a longer time. After 12 months of immunization, mice still had high and low levels of antibodies in their bodies. Results showed that the nanovaccine could promote the differentiation of B cells into long-lived plasma cells and maintain the long-term existence of antibodies in vivo. After immunization, the antibodies in mice could protect the mice infected by C. albicans. Conclusion: As an adjuvant, PEI can promote the differentiation of B cells into long-lived plasma cells to maintain long-term antibodies in vivo. This strategy can be adapted for the future design of vaccines.


Asunto(s)
Polietileneimina , Vacunas , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Animales , Antifúngicos/farmacología , Candida albicans , Candidiasis , Humanos , Ratones
4.
J Neuroinflammation ; 19(1): 162, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725625

RESUMEN

BACKGROUND: Peripheral nerve inflammation or lesion can affect contralateral healthy structures, and thus result in mirror-image pain. Supraspinal structures play important roles in the occurrence of mirror pain. The anterior cingulate cortex (ACC) is a first-order cortical region that responds to painful stimuli. In the present study, we systematically investigate and compare the neuroimmune changes in the bilateral ACC region using unilateral- (spared nerve injury, SNI) and mirror-(L5 ventral root transection, L5-VRT) pain models, aiming to explore the potential supraspinal neuroimmune mechanism underlying the mirror-image pain. METHODS: The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Viral injections for the designer receptors exclusively activated by designer drugs (DREADD) were used to modulate ACC glutamatergic neurons. Immunohistochemistry, immunofluorescence, western blotting, protein microarray were used to detect the regulation of inflammatory signaling. RESULTS: Increased expressions of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and chemokine CX3CL1 in ACC induced by unilateral nerve injury were observed on the contralateral side in the SNI group but on the bilateral side in the L5-VRT group, representing a stronger immune response to L5-VRT surgery. In remote ACC, both SNI and L5-VRT induced robust bilateral increase in the protein level of Nav1.6 (SCN8A), a major voltage-gated sodium channel (VGSC) that regulates neuronal activity in the mammalian nervous system. However, the L5-VRT-induced Nav1.6 response occurred at PO 3d, earlier than the SNI-induced one, 7 days after surgery. Modulating ACC glutamatergic neurons via DREADD-Gq or DREADD-Gi greatly changed the ACC CX3CL1 levels and the mechanical paw withdrawal threshold. Neutralization of endogenous ACC CX3CL1 by contralateral anti-CX3CL1 antibody attenuated the induction and the maintenance of mechanical allodynia and eliminated the upregulation of CX3CL1, TNF-α and Nav1.6 protein levels in ACC induced by SNI. Furthermore, contralateral ACC anti-CX3CL1 also inhibited the expression of ipsilateral spinal c-Fos, Iba1, CD11b, TNF-α and IL-6. CONCLUSIONS: The descending facilitation function mediated by CX3CL1 and its downstream cascade may play a pivotal role, leading to enhanced pain sensitization and even mirror-image pain. Strategies that target chemokine-mediated ACC hyperexcitability may lead to novel therapies for the treatment of neuropathic pain.


Asunto(s)
Hiperalgesia , Neuralgia , Animales , Ganglios Espinales/metabolismo , Giro del Cíngulo/metabolismo , Hiperalgesia/metabolismo , Interleucina-6/metabolismo , Mamíferos/metabolismo , Neuralgia/metabolismo , Enfermedades Neuroinflamatorias , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
6.
ACS Biomater Sci Eng ; 7(5): 1817-1826, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33966375

RESUMEN

Pseudomonas aeruginosa (PA) has emerged as a pressing challenge to pulmonary infection and lung damage. The LL37 peptide is an efficient antimicrobial agent against PA strains, but its application is limited because of fast clearance in vivo, biosafety concerns, and low bioavailability. Thus, an albumin-based nanodrug delivery system with reduction sensitivity was developed by forming intermolecular disulfide bonds to increase in vivo LL37 performance against PA. Cationic LL37 can be efficiently encapsulated via electrostatic interactions to exert improved antimicrobial effects. The LL37 peptide exhibits greater than 48 h of sustained released from LL37 peptide nanoparticles (LL37 PNP), and prolonged antimicrobial effects were noted as the incubation time increased. Levels of inflammatory cytokines secreted by peritoneal macrophages, including TNF-α and IL-6, were reduced significantly after LL37 PNP treatment following PA stimulation, indicating that LL37 PNP inhibits PA growth and exerts anti-inflammatory effects in vitro. In a murine model of acute PA lung infection, LL37 PNP significantly reduced TNF-α and IL-1ß expression and alleviated lung damage. The accelerated clearance of PA indicates that LL37 PNP could improve PA lung infection and the subsequent inflammation response more efficiently compared with free LL37 peptide. In conclusion, this excellent biocompatible LL37 delivery strategy may serve as an alternative approach for the application of new types of clinical treatment in future.


Asunto(s)
Nanopartículas , Pseudomonas aeruginosa , Albúminas , Animales , Péptidos Catiónicos Antimicrobianos , Preparaciones de Acción Retardada , Pulmón , Ratones
7.
Mol Pain ; 15: 1744806919826789, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30632435

RESUMEN

Accumulating evidence shows that inhibition of glycogen synthase kinase-3beta (GSK-3ß) ameliorates cognitive impairments caused by a diverse array of diseases. Our previous work showed that spared nerve injury (SNI) that induces neuropathic pain causes short-term memory deficits. Here, we reported that GSK-3ß activity was enhanced in hippocampus and reduced in spinal dorsal horn following SNI, and the changes persisted for at least 45 days. Repetitive applications of selective GSK-3ß inhibitors (SB216763, 5 mg/kg, intraperitoneally, three times or AR-A014418, 400 ng/kg, intrathecally, seven times) prevented short-term memory deficits but did not affect neuropathic pain induced by SNI. Surprisingly, we found that the repetitive SB216763 or AR-A014418 induced a persistent pain hypersensitivity in sham animals. Mechanistically, both ß-catenin and brain-derived neurotrophic factor (BDNF) were upregulated in spinal dorsal horn but downregulated in hippocampus following SNI. Injections of SB216763 prevented the BDNF downregulation in hippocampus but enhanced its upregulation in spinal dorsal horn in SNI rats. In sham rats, SB216763 upregulated both ß-catenin and BDNF in spinal dorsal horn but affect neither of them in hippocampus. Finally, intravenous injection of interleukin-1beta that induces pain hypersensitivity and memory deficits mimicked the SNI-induced the differential regulation of GSK-3ß/ß-catenin/BDNF in spinal dorsal horn and in hippocampus. Accordingly, the prolonged opposite changes of GSK-3ß activity in hippocampus and in spinal dorsal horn induced by SNI may contribute to memory deficits and neuropathic pain by differential regulation of BDNF in the two regions. GSK-3ß inhibitors that treat cognitive disorders may result in a long-lasting pain hypersensitivity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Hiperalgesia/patología , Interleucina-1beta/farmacología , Trastornos de la Memoria/patología , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/etiología , Indoles/uso terapéutico , Masculino , Maleimidas/uso terapéutico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Proteínas del Tejido Nervioso/metabolismo , Dimensión del Dolor , Traumatismos de los Nervios Periféricos/complicaciones , Ratas , Ratas Sprague-Dawley , Tiazoles/uso terapéutico , Factores de Tiempo , Urea/análogos & derivados , Urea/uso terapéutico , beta Catenina/metabolismo
8.
Brain Behav Immun ; 71: 52-65, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29709527

RESUMEN

N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 µM or ZC88, 10-1000 µM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 µM) and ZC88 (10 µM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1ß) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1ß induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1ß and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1ß over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Ganglios Espinales/fisiopatología , Animales , Canales de Calcio Tipo N/metabolismo , Hiperalgesia/fisiopatología , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatología , Neuronas/metabolismo , Neuronas/fisiología , Neuronas Aferentes/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Ratas , Ratas Sprague-Dawley , Nervios Espinales/fisiopatología , Transmisión Sináptica/fisiología , Activación Transcripcional , Regulación hacia Arriba
9.
Neuroscience ; 376: 142-151, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29477696

RESUMEN

Both calpain-2 (CALP2) and tumor necrosis factor-α (TNF-α) contribute to persistent bilateral hypersensitivity in animals subjected to L5 ventral root transection (L5-VRT), a model of selective motor fiber injury without sensory nerve damage. However, specific upstream mechanisms regulating TNF-α overexpression and possible relationships linking CALP2 and TNF-α have not yet been investigated in this model. We examined changes in CALP2 and TNF-α protein levels and alterations in bilateral mechanical threshold within 24 h following L5-VRT model injury. We observed robust elevation of CALP2 and TNF-α in bilateral dorsal root ganglias (DRGs) and bilateral spinal cord neurons. CALP2 and TNF-α protein induction by L5-VRT were significantly inhibited by pretreatment using the calpain inhibitor MDL28170. Administration of CALP2 to rats without nerve injury further supported a role of CALP2 in the regulation of TNF-α expression. Although clinical trials of calpain inhibition therapy for alleviation of neuropathic pain induced by motor nerve injury have not yet shown success, our observations linking CALP2 and TNF-α provide a framework of a systems' approach based perspective for treating neuropathic pain.


Asunto(s)
Calpaína/metabolismo , Neuralgia/metabolismo , Raíces Nerviosas Espinales/lesiones , Raíces Nerviosas Espinales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Calpaína/administración & dosificación , Calpaína/antagonistas & inhibidores , Modelos Animales de Enfermedad , Lateralidad Funcional , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Regulación de la Expresión Génica , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/patología , Vértebras Lumbares , Masculino , Neuralgia/etiología , Neuralgia/patología , Umbral del Dolor/fisiología , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Médula Espinal/patología , Tacto
10.
J Neurochem ; 145(2): 154-169, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29423951

RESUMEN

Previous work from our laboratory showed that motor nerve injury by lumbar 5 ventral root transection (L5-VRT) led to interleukin-6 (IL-6) over-expression in bilateral spinal cord, and that intrathecal administration of IL-6 neutralizing antibody delayed the induction of mechanical allodynia in bilateral hind paws. However, early events and upstream mechanisms underlying spinal IL-6 expression following L5-VRT require elucidation. The model of L5-VRT was used to induce neuropathic pain, which was assessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Calpain-2 (CALP2, a calcium-dependent protease) knockdown or over-expression and microglia depletion were conducted intrathecally. Western blots and immunohistochemistry were performed to explore the possible mechanisms. Here, we provide the first evidence that both IL-6 and CALP2 levels are increased in lumbar spinal cord within 30 min following L5-VRT. IL-6 and CALP2 co-localized in both spinal dorsal horn (SDH) and spinal ventral horn. Post-operative (PO) increase in CALP2 in ipsilateral SDH was evident at 10 min PO, preceding increased IL-6 at 20 min PO. Knockdown of spinal CALP2 by intrathecal CALP2-shRNA administration prevented VRT-induced IL-6 overproduction in ipsilateral spinal cord and alleviated bilateral mechanical allodynia. Spinal microglia activation also played a role in early IL-6 up-regulation. Macrophage/microglia markers ED1/Iba1 were increased at 30 min PO, while glial fibrillary acidic protein (astrocyte) and CNPase (oligodendrocyte) markers were not. Increased Iba1 was detected as early as 20 min PO and peaked at 3 days. Morphology changed from a small soma with fine processes in resting cells to an activated ameboid shape. Depletion of microglia using Mac-1-saporin partially prevented IL-6 up-regulation and attenuated VRT-induced bilateral mechanical allodynia. Taken together, our findings provide evidence that increased spinal cord CALP2 and microglia cell activation may have early causative roles in IL-6 over-expression following motor nerve injury. Agents that inhibit CALP2 and/or microglia activation may therefore prove valuable for treating neuropathic pain.


Asunto(s)
Calpaína/biosíntesis , Interleucina-6/biosíntesis , Microglía/metabolismo , Neuronas Motoras/metabolismo , Neuralgia/metabolismo , Raíces Nerviosas Espinales/lesiones , Animales , Axotomía , Hiperalgesia/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Raíces Nerviosas Espinales/metabolismo , Regulación hacia Arriba
11.
Mol Pain ; 13: 1744806917747425, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29166835

RESUMEN

Oxaliplatin-induced chronic painful neuropathy is the most common dose-limiting adverse event that negatively affects cancer patients' quality of life. However, the underlying molecular mechanisms are still unclear. In the present study, we found that the intraperitoneal administration of oxaliplatin at 4 mg/kg for five consecutive days noticeably upregulated the expression of CXC motif ligand 12 (CXCL12) in the dorsal root ganglion, and the intrathecal injection of an anti-CXCL12 neutralizing antibody or CXCL12 siRNA attenuated the mechanical allodynia and thermal hyperalgesia induced by oxaliplatin. We also found that the signal transducers and transcription activator 3 (STAT3) was activated in the dorsal root ganglion, and inhibition of STAT3 with S3I-201 or the injection of AAV-Cre-GFP into STAT3flox/flox mice prevented the upregulation of CXCL12 expression in the dorsal root ganglion and chronic pain following oxaliplatin administration. Double-label fluorescent immunohistochemistry findings also showed that p-STAT3 was mainly localized in CXCL12-positive cells in the dorsal root ganglion. Furthermore, the results of a chromatin immunoprecipitation assay revealed that p-STAT3 might be essential for oxaliplatin-induced CXCL12 upregulation via binding directly to the specific position of the CXCL12 gene promoter. Finally, we found that cytokine TNF-α and IL-1ß increases mediated the STAT3 activation following oxaliplatin treatment. Taken together, these findings suggested that the upregulation of CXCL12 via TNF-α/IL-1ß-dependent STAT3 activation contributes to oxaliplatin-induced chronic pain.


Asunto(s)
Quimiocina CXCL12/metabolismo , Dolor Crónico/inducido químicamente , Dolor Crónico/metabolismo , Ganglios Espinales/metabolismo , Compuestos Organoplatinos/efectos adversos , Factor de Transcripción STAT3/metabolismo , Regulación hacia Arriba , Animales , Quimiocina CXCL12/genética , Dolor Crónico/patología , Hiperalgesia/complicaciones , Hiperalgesia/metabolismo , Hiperalgesia/patología , Interleucina-1beta/metabolismo , Masculino , Oxaliplatino , Fosforilación , Regiones Promotoras Genéticas/genética , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Neurosci ; 37(4): 871-881, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123022

RESUMEN

Clinical studies show that chronic pain is accompanied by memory deficits and reduction in hippocampal volume. Experimental studies show that spared nerve injury (SNI) of the sciatic nerve induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, but impairs LTP in the hippocampus. The opposite changes may contribute to neuropathic pain and memory deficits, respectively. However, the cellular and molecular mechanisms underlying the functional synaptic changes are unclear. Here, we show that the dendrite lengths and spine densities are reduced significantly in hippocampal CA1 pyramidal neurons, but increased in spinal neurokinin-1-positive neurons in mice after SNI, indicating that the excitatory synaptic connectivity is reduced in hippocampus but enhanced in spinal dorsal horn in this neuropathic pain model. Mechanistically, tumor necrosis factor-alpha (TNF-α) is upregulated in bilateral hippocampus and in ipsilateral spinal dorsal horn, whereas brain-derived neurotrophic factor (BDNF) is decreased in the hippocampus but increased in the ipsilateral spinal dorsal horn after SNI. Importantly, the SNI-induced opposite changes in synaptic connectivity and BDNF expression are prevented by genetic deletion of TNF receptor 1 in vivo and are mimicked by TNF-α in cultured slices. Furthermore, SNI activated microglia in both spinal dorsal horn and hippocampus; pharmacological inhibition or genetic ablation of microglia prevented the region-dependent synaptic changes, neuropathic pain, and memory deficits induced by SNI. The data suggest that neuropathic pain involves different structural synaptic alterations in spinal and hippocampal neurons that are mediated by overproduction of TNF-α and microglial activation and may underlie chronic pain and memory deficits. SIGNIFICANCE STATEMENT: Chronic pain is often accompanied by memory deficits. Previous studies have shown that peripheral nerve injury produces both neuropathic pain and memory deficits and induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn (SDH) but inhibits LTP in hippocampus. The opposite changes in synaptic plasticity may contribute to chronic pain and memory deficits, respectively. However, the structural and molecular bases of these alterations of synaptic plasticity are unclear. Here, we show that the complexity of excitatory synaptic connectivity and brain-derived neurotrophic factor (BDNF) expression are enhanced in SDH but reduced in the hippocampus in neuropathic pain and the opposite changes depend on tumor necrosis factor-alpha/tumor necrosis factor receptor 1 signaling and microglial activation. The region-dependent synaptic alterations may underlie chronic neuropathic pain and memory deficits induced by peripheral nerve injury.


Asunto(s)
Hipocampo/metabolismo , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Neuralgia/metabolismo , Neuralgia/patología , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Factor de Necrosis Tumoral alfa/farmacología
13.
Neuropharmacology ; 110(Pt A): 181-189, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27460962

RESUMEN

ClC-3 chloride channel/antiporter has been demonstrated to play an important role in synaptic transmission in central nervous system. However, its expression and function in sensory neurons is poorly understood. In present work, we found that ClC-3 is expressed at high levels in dorsal root ganglia (DRG). Co-immunofluorescent data showed that ClC-3 is mainly distributed in A- and C-type nociceptive neurons. ClC-3 expression in DRG is decreased in the spared nerve injury (SNI) model of neuropathic pain. Knockdown of local ClC-3 in DRG neurons with siRNA increased mechanical sensitivity in naïve rats, while overexpression of ClC-3 reversed the hypersensitivity to mechanical stimuli after peripheral nerve injury. In addition, genetic deletion of ClC-3 enhances mouse mechanical sensitivity but did not affect thermal and cold threshold. Restoration of ClC-3 expression in ClC-3 deficient mice reversed the mechanical sensitivity. Mechanistically, loss of ClC-3 enhanced mechanical sensitivity through increasing the excitability of DRG neurons. These data indicate that ClC-3 is an endogenous inhibitor of neuropathic pain development. Downregulation of ClC-3 by peripheral nerve injury is critical for mechanical hypersensitivity. Our findings suggest that ClC-3 is a novel therapeutic target for treating neuropathic pain.


Asunto(s)
Canales de Cloruro/metabolismo , Regulación hacia Abajo/fisiología , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Ganglios Espinales/patología , Hiperalgesia/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Dimensión del Dolor/métodos , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Sprague-Dawley
14.
Brain Behav Immun ; 40: 155-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24681252

RESUMEN

Painful peripheral neuropathy is a dose-limiting side effect of paclitaxel therapy, which hampers the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms remain largely unknown. Here we showed that the clinically relevant dose of paclitaxel (3×8mg/kg, cumulative dose 24mg/kg) induced significant upregulation of the chemokine CX3CL1 in the A-fiber primary sensory neurons in vivo and in vitro and infiltration of macrophages into the dorsal root ganglion (DRG) in rats. Paclitaxel treatment also increased cleaved caspase-3 expression, induced the loss of primary afferent terminal fibers and decreased sciatic-evoked A-fiber responses in the spinal dorsal horn, indicating DRG neuronal apoptosis induced by paclitaxel. In addition, the paclitaxel-induced DRG neuronal apoptosis occurred exclusively in the presence of macrophage in vitro study. Intrathecal or systemic injection of CX3CL1 neutralizing antibody blocked paclitaxel-induced macrophage recruitment and neuronal apoptosis in the DRG, and also attenuated paclitaxel-induced allodynia. Furthermore, depletion of macrophage by systemic administration of clodronate inhibited paclitaxel-induced allodynia. Blocking CX3CL1 decreased activation of p38 MAPK in the macrophage, and inhibition of p38 MAPK activity blocked the neuronal apoptosis and development of mechanical allodynia induced by paclitaxel. These findings provide novel evidence that CX3CL1-recruited macrophage contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Apoptosis/efectos de los fármacos , Quimiocina CX3CL1/metabolismo , Ganglios Espinales/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neuronas/efectos de los fármacos , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Animales , Ganglios Espinales/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Neuronas/metabolismo , Dolor/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Regulación hacia Arriba
15.
Pain Physician ; 16(5): E563-75, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24077207

RESUMEN

BACKGROUND: Clinical studies have shown that about two-thirds of patients with chronic pain suffer from short-term memory (STM) deficits and an effective drug for treatment of the neurological disorder is lacking at present. OBJECTIVE: We tested whether chronic oral application of magnesium L-threonate (MgT), which has been shown to improve memory in normal and aging animals by elevating Mg2+ in the brain, could prevent or restore the STM deficits induced by spared nerve injury (SNI), an animal model of chronic neuropathic pain. The mechanisms underlying the effect of MgT on STM deficits were also investigated. STUDY DESIGN: The experiments were conducted in a random and double-blind fashion in adult male rats. MgT was administrated via drinking water at a dose of 609 mg/kg/d for 2 weeks, starting either one week before SNI (preventative group) or one week after SNI (therapeutic group), and water without the drug served as control. METHODS: STM was accessed with a novel object recognition test (NORT), followed by recording of long-term potentiation (LTP) in the hippocampus in vivo and the measurement of the expression of tumor necrosis factor-α (TNF-α) with Western Blot or Immunohistochemistrical staining, a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) currents were recorded with patch clamp in CA1 neurons in acute and cultured hippocampal slices. RESULT: We found that chronic oral application of MgT was able to prevent and restore the deficits of STM and of LTP at CA3-CA1 synapses in the hippocampus induced by SNI. Furthermore, both preventative and therapeutic chronic oral application of MgT blocked the up-regulation of TNF-α in the hippocampus, which has been previously shown to be critical for memory deficits. SNI reduced NMDAR current and the effect was dramatically attenuated by elevating extracellular Mg2+ concentration ([Mg2+]○). In cultured hippocampal slices, chronic application of recombinant rat TNF-α (rrTNF-α) for 3 days reduced NMDAR current in a concentration-dependent manner and the effect was again blocked by elevating [Mg2+]○. LIMITATIONS: We showed that oral application of MgT inhibited the over-expression of TNF-α and rescued the dysfunction of the NMDAR, but the causal relationship between them remains elusive. CONCLUSIONS: Our data suggested that oral application of MgT was able to prevent and restore the STM deficits in an animal model of chronic neuropathic pain by reversing the dysfunction of the NMDAR, and normalization of TNF-α expression may play a role in the effect. Oral application of MgT may be a simple and potent means for handling this form of memory deficit.


Asunto(s)
Butiratos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Método Doble Ciego , Masculino , Trastornos de la Memoria/prevención & control , Neuralgia/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Mater Sci Eng C Mater Biol Appl ; 33(5): 2698-707, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23623086

RESUMEN

PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ~100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Micelas , Poloxámero/administración & dosificación , Apoptosis , Células Hep G2 , Humanos , Microscopía Confocal
17.
Exp Neurol ; 247: 466-75, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23357618

RESUMEN

The over-expression of voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons following peripheral nerve injury contributes to neuropathic pain by generation of the ectopic discharges of action potentials. However, mechanisms underlying the change in VGSCs' expression are poorly understood. Our previous work has demonstrated that the pro-inflammatory cytokine TNF-α up-regulates VGSCs. In the present work we tested if anti-inflammatory cytokine IL-10, which had been proven to be effective for treating neuropathic pain, had the opposite effect. Western blot and immunofluorescence results showed that IL-10 receptor was localized in DRG neurons. Recombinant rat IL-10 (200 pg/ml) not only reduced the densities of TTX-sensitive and Nav1.8 currents in control DRG neurons, but also reversed the increase of the sodium currents induced by rat recombinant TNF-α (100 pg/ml), as revealed by patch-clamp recordings. Consistent with the electrophysiological results, real-time PCR and western blot revealed that IL-10 (200 pg/ml) down-regulated VGSCs in both mRNA and protein levels and reversed the up-regulation of VGSCs by TNF-α. Moreover, repetitive intrathecal administration of rrIL-10 for 3 days (4 times per day) attenuated mechanical allodynia in L5 spinal nerve ligation model and profoundly inhibited the excitability of DRG neurons. These results suggested that the down-regulation of the sodium channels in DRG neurons might contribute to the therapeutic effect of IL-10 on neuropathic pain.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Ganglios Espinales/patología , Interleucina-10/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ligadura , Masculino , Potenciales de la Membrana/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Dimensión del Dolor , Enfermedades del Sistema Nervioso Periférico/patología , Ratas , Ratas Sprague-Dawley , Receptores de Interleucina-10/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Canales de Sodio Activados por Voltaje/genética
18.
J Neurosci ; 33(4): 1540-51, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23345228

RESUMEN

At present, effective drug for treatment of neuropathic pain is still lacking. Recent studies have shown that the ligands of translocator protein (TSPO, 18 kDa), a peripheral receptor for benzodiazepine, modulate inflammatory pain. Here, we report that TSPO was upregulated in astrocytes and microglia in the ipsilateral spinal dorsal horn of rats following L5 spinal nerve ligation (L5 SNL), lasting until the vanishing of the behavioral signs of neuropathic pain (∼50 d). Importantly, a single intrathecal injection of specific TSPO agonists Ro5-4864 or FGIN-1-27 at 7 and 21 d after L5 SNL depressed the established mechanical allodynia and thermal hyperalgesia dramatically, and the effect was abolished by pretreatment with AMG, a neurosteroid synthesis inhibitor. Mechanically, Ro5-4864 substantially inhibited spinal astrocytes but not microglia, and reduced the production of tumor necrosis factor-α (TNF-α) in vivo and in vitro. The anti-neuroinflammatory effect was also prevented by AMG. Interestingly, TSPO expression returned to control levels or decreased substantially, when neuropathic pain healed naturally or was reversed by Ro5-4864, suggesting that the role of TSPO upregulation might be to promote recovery from the neurological disorder. Finally, the neuropathic pain and the upregulation of TSPO by L5 SNL were prevented by pharmacological blockage of Toll-like receptor 4 (TLR4). These data suggested that TSPO might be a novel therapeutic target for the treatment of neuropathic pain.


Asunto(s)
Proteínas Portadoras/biosíntesis , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores de GABA-A/biosíntesis , Animales , Astrocitos/metabolismo , Western Blotting , Células Cultivadas , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Masculino , Neuroglía/metabolismo , Ratas , Ratas Sprague-Dawley , Nervios Espinales/lesiones , Nervios Espinales/metabolismo , Regulación hacia Arriba
19.
Exp Neurol ; 241: 159-68, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23261764

RESUMEN

Our previous works have shown that pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) plays an important role in neuropathic pain produced by lumber 5 ventral root transection (L5-VRT). In the present work we evaluate the role of interleukin-6 (IL-6), another key inflammatory cytokine, in the L5-VRT model. We found that IL-6 was up-regulated in the ipsilateral L4 and L5 dorsal root ganglian (DRG) neurons and in bilateral lumbar spinal cord following L5-VRT. Double immunofluorescence stainings revealed that in DRGs the increased immunoreactivity (IR) of IL-6 was almost restricted in neuronal cells, while in the spinal dorsal horn IL-6-IR up-regulated in both glial cells (astrocyte and microglia) and neurons. Intrathecal administration of IL-6 neutralizing antibody significantly delayed the induction of mechanical allodynia in bilateral hindpaws after L5-VRT. Furthermore, inhibition of TNF-α synthesis by intraperitoneal thalidomide prevented both mechanical allodynia and the up-regulation of IL-6 in DRGs following L5-VRT. These data suggested that the increased IL-6 in afferent neurons and spinal cord contribute to the development of neuropathic pain following motor fiber injury, and that TNF-α is responsible for the up-regulation of IL-6.


Asunto(s)
Interleucina-6/metabolismo , Neuralgia/etiología , Neuralgia/patología , Polirradiculopatía/complicaciones , Raíces Nerviosas Espinales/metabolismo , Regulación hacia Arriba/fisiología , Factor de Transcripción Activador 3/metabolismo , Análisis de Varianza , Animales , Antígeno CD11b/metabolismo , Modelos Animales de Enfermedad , Lateralidad Funcional , Hiperalgesia/etiología , Lectinas/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Umbral del Dolor/fisiología , Polirradiculopatía/etiología , Ratas , Ratas Sprague-Dawley , Raíces Nerviosas Espinales/patología , Nervios Espinales/lesiones , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
20.
J Biomed Mater Res A ; 100(9): 2499-506, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22623284

RESUMEN

Because of its unique chemical and physical properties, graphene oxide (GO) has attracted a large number of researchers to explore its biomedical applications in the past few years. Here, we synthesized a novel multifunctional nanocomposite based on GO and systemically investigated its applications for in vitro hepatocarcinoma diagnosis and treatment. This multifunctional nanocomposite named GO-PEG-FA/Gd/DOX was obtained as the following procedures: gadolinium-diethylenetriamine-pentaacetic acid-poly(diallyl dimethylammonium) chloride (Gd-DTPA-PDDA) as magnetic resonance imaging (MRI) probe was applied to modify GO by simple physical sorption with a loading efficiency of Gd(3+) up to 0.314 mg mg(-1). In order to improve its tumor targeting imaging and treatment efficiency, the obtained intermediate product was further modified with folic acid (FA). Finally, the nanocomposite was allowed to load anticancer drug doxorubicin hydrochloride via π-π stacking and hydrophobic interaction with the loading capacity reaching 1.38 mg mg(-1). MRI test revealed that GO-PEG-FA/Gd/DOX exhibit superior tumor targeting imaging efficiency over free Gd(3+). The in vitro release of DOX from the nanocomposite under tumor relevant condition (pH 5.5) was fast at the initial 10 h and then become relatively slow afterward. Moreover, we experimentally demonstrated that the multifunctional nanocomposite exhibited obviously cytotoxic effect upon cancer cells. Above results are promising for the next in vivo experiment and make it possible to be a potential candidate for malignancy early detection and specific treatment.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Grafito , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamiento farmacológico , Nanocompuestos , Antibióticos Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Portadores de Fármacos/química , Gadolinio/química , Gadolinio DTPA/química , Grafito/química , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Imagen por Resonancia Magnética/métodos , Nanocompuestos/química , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...