Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1422770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040469

RESUMEN

Background: The beneficial effects of fibroblast growth factor 21 (FGF21) and sodium butyrate (NaB) on protection against cholestasis-induced liver fibrosis are not well known. This study aimed to explore the effects of FGF21 and NaB on bile duct ligation (BDL)-induced liver fibrosis. Methods: Wild-type (WT) and FGF21 knockout (KO) mice received BDL surgery for 14 days. Liver fibrosis was assessed by Masson's staining for fibrosis marker expressions at the mRNA or protein levels. Adenovirus-mediated FGF21 overexpression in the WT mice was assessed against BDL damage. BDL surgeries were performed in WT and FGF21 KO mice that were administered either phosphate-buffered saline or NaB. The effects of NaB on the energy metabolism and gut microbiota were assessed using stable metabolism detection and 16S rRNA gene sequencing. Results: BDL-induced liver fibrosis in the WT mice was accompanied by high induction of FGF21. Compared to the WT mice, the FGF21 KO mice showed more severe liver fibrosis induced by BDL. FGF21 overexpression protected against BDL-induced liver fibrosis, as proved by the decreasing α-SMA at both the mRNA and protein levels. NaB administration enhanced the glucose and energy metabolisms as well as remodeled the gut microbiota. NaB alleviated BDL-induced liver fibrosis in the WT mice but aggravated the same in FGF21 KO mice. Conclusion: FGF21 plays a key role in alleviating cholestasis-induced liver damage and fibrosis. NaB has beneficial effects on cholestasis in an FGF21-dependent manner. NaB administration can thus be a novel nutritional therapy for treating cholestasis via boosting FGF21 signaling and regulating the gut microbiota.

2.
Sheng Li Xue Bao ; 76(1): 12-32, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38444128

RESUMEN

The present study aimed to investigate the alterations in functional interaction between hippocampal CA1 and medial entorhinal cortex (MEC) after moderate traumatic brain injury (TBI) in C57BL/6J mice, and the possible beneficial effects of comprehensive exercise (CE). Following TBI, two microelectrodes were implanted into CA1 and MEC for extracellular recording. We found a clear synchronization of neuronal firing in CA1 and MEC, particularly within 100 Hz and peaked at 20-30 Hz range. TBI induced a significant reduction (P < 0.001) of the coherences of firing between 20-40 Hz frequency band. The mean power spectral densities (PSD) of all group mice in MEC were steadily larger than the values in CA1 in both 20-40 Hz and 56-100 Hz ranges. TBI induced significant and consistent increases of averaged 20-40 Hz or 56-100 Hz PSD (P < 0.001 or P < 0.01) in both CA1 and MEC. Injured mice displayed more varied firing patterns, and showed increased burst frequency (BF), burst duration (BD), inter-spike intervals (ISI) and inter-burst interval (IBI). Injured mice also showed worsened neurological function, sleep, gait performance, and working memory. CE facilitated the restoration of aforementioned electrophysiological characteristics and functional deficits in TBI mice. These results suggest that the beneficial effects of CE on TBI functional deficits may be partly attributed to improved neuronal network interaction between CA1 and MEC.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Corteza Entorrinal , Animales , Ratones , Ratones Endogámicos C57BL , Hipocampo , Redes Neurales de la Computación
3.
Angew Chem Int Ed Engl ; 63(15): e202319978, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38369652

RESUMEN

Ethylene (C2H4) purification and propylene (C3H6) recovery are highly relevant in polymer synthesis, yet developing physisorbents for these industrial separation faces the challenges of merging easy scalability, economic feasibility, high moisture stability with great separation efficiency. Herein, we reported a robust and scalable MOF (MAC-4) for simultaneous recovery of C3H6 and C2H4. Through creating nonpolar pores decorated by accessible N/O sites, MAC-4 displays top-tier uptakes and selectivities for C2H6 and C3H6 over C2H4 at ambient conditions. Molecular modelling combined with infrared spectroscopy revealed that C2H6 and C3H6 molecules were trapped in the framework with stronger contacts relative to C2H4. Breakthrough experiments demonstrated exceptional separation performance for binary C2H6/C2H4 and C3H6/C2H4 as well as ternary C3H6/C2H6/C2H4 mixtures, simultaneously affording record productivities of 27.4 and 36.2 L kg-1 for high-purity C2H4 (≥99.9 %) and C3H6 (≥99.5 %). MAC-4 was facilely prepared at deckgram-scale under reflux condition within 3 hours, making it as a smart MOF to address challenging gas separations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...