Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
BMC Urol ; 24(1): 165, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090582

RESUMEN

BACKGROUND: We investigated the feasibility of the tertiary lymphoid structure (TLS) as a prognostic marker for penile squamous cell carcinoma(SCC). METHODS: We retrospectively collected data from 83 patients with penile squamous cell carcinoma. H&E-stained slides were reviewed for TLS density. In addition, clinical parameters were analyzed, the prognostic value of these parameters on overall survival (OS) was evaluated using ‒ Kaplan-Meier survival curves, and the prognostic value of influencing factors was evaluated using Cox multifactor design nomogram analysis. RESULT: BMI, T, N, and M are significant in the survival curve with or without tertiary lymphoid structure. BMI, T, N, M and TLS were used to construct a prognostic model for penile squamous cell carcinoma, and the prediction accuracy reached a consensus of 0.884(0.835-0.932), and the decision consensus reached 0.581(0.508-0.655). CONCLUSION: TLS may be a positive prognostic factor for penile squamous cell carcinoma, and the combination of BMI, T, N and M can better evaluate the prognosis of patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Pene , Estructuras Linfoides Terciarias , Masculino , Neoplasias del Pene/patología , Neoplasias del Pene/mortalidad , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/mortalidad , Pronóstico , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Estructuras Linfoides Terciarias/patología , Adulto , Tasa de Supervivencia
3.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125712

RESUMEN

Liver lipid metabolism disruption significantly contributes to excessive fat buildup in waterfowl. Research suggests that the supplementation of Threonine (Thr) in the diet can improve liver lipid metabolism disorder, while Thr deficiency can lead to such metabolic disorders in the liver. The mechanisms through which Thr regulates lipid metabolism remain unclear. STAT3 (signal transducer and activator of transcription 3), a crucial transcription factor in the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway, participates in various biological processes, including lipid and energy metabolism. This research investigates the potential involvement of STAT3 in the increased lipid storage seen in primary duck hepatocytes as a result of a lack of Thr. Using small interfering RNA and Stattic, a specific STAT3 phosphorylation inhibitor, we explored the impact of STAT3 expression patterns on Thr-regulated lipid synthesis metabolism in hepatocytes. Through transcriptome sequencing, we uncovered pathways related to lipid synthesis and metabolism jointly regulated by Thr and STAT3. The results showed that Thr deficiency increases lipid deposition in primary duck hepatocytes (p < 0.01). The decrease in protein and phosphorylation levels of STAT3 directly caused this deposition (p < 0.01). Transcriptomic analysis revealed that Thr deficiency and STAT3 knockdown jointly altered the mRNA expression levels of pathways related to long-chain fatty acid synthesis and energy metabolism (p < 0.05). Thr deficiency, through mediating STAT3 inactivation, upregulated ELOVL7, PPARG, MMP1, MMP13, and TIMP4 mRNA levels, and downregulated PTGS2 mRNA levels (p < 0.01). In summary, these results suggest that Thr deficiency promotes lipid synthesis, reduces lipid breakdown, and leads to lipid metabolism disorders and triglyceride deposition by downregulating STAT3 activity in primary duck hepatocytes.


Asunto(s)
Patos , Hepatocitos , Factor de Transcripción STAT3 , Treonina , Triglicéridos , Animales , Factor de Transcripción STAT3/metabolismo , Hepatocitos/metabolismo , Fosforilación , Treonina/metabolismo , Triglicéridos/metabolismo , Metabolismo de los Lípidos , Células Cultivadas
4.
BMC Genomics ; 25(1): 776, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123103

RESUMEN

BACKGROUND: Transcription factors (TFs) of plant-specific SHORT INTERNODES (SHI) family play a significant role in regulating development and metabolism in plants. In Artemisia annua, various TFs from different families have been discovered to regulate the accumulation of artemisinin. However, specific members of the SHI family in A. annua (AaSHIs) have not been identified to regulate the biosynthesis of artemisinin. RESULTS: We found five AaSHI genes (AaSHI1 to AaSHI5) in the A. annua genome. The expression levels of AaSHI1, AaSHI2, AaSHI3 and AaSHI4 genes were higher in trichomes and young leaves, also induced by light and decreased when the plants were subjected to dark treatment. The expression pattern of these four AaSHI genes was consistent with the expression pattern of four structural genes of artemisinin biosynthesis and their specific regulatory factors. Dual-luciferase reporter assays, yeast one-hybrid assays, and transient transformation in A. annua provided the evidence that AaSHI1 could directly bind to the promoters of structural genes AaADS and AaCYP71AV1, and positively regulate their expressions. This study has presented candidate genes, with AaSHI1 in particular, that can be considered for the metabolic engineering of artemisinin biosynthesis in A. annua. CONCLUSIONS: Overall, a genome-wide analysis of the AaSHI TF family of A. annua was conducted. Five AaSHIs were identified in A. annua genome. Among the identified AaSHIs, AaSHI1 was found to be localized to the nucleus and activate the expression of structural genes of artemisinin biosynthesis including AaADS and AaCYP71AV1. These results indicated that AaSHI1 had positive roles in modulating artemisinin biosynthesis, providing candidate genes for obtaining high-quality new A. annua germplasms.


Asunto(s)
Artemisia annua , Artemisininas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Filogenia
5.
J Colloid Interface Sci ; 675: 970-979, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39003816

RESUMEN

Vinyl-bearing triazine-functionalized covalent organic frameworks (COFs) have emerged as promising materials for electrocatalysis and energy storage. Guided by density functional theory calculations, a vinyl-enriched COF (VCOF-1) featuring a donor-acceptor structure was synthesized based on the Knoevenagel reaction. Moreover, the VCOF-1@Ru without pyrolysis was obtained through chemical coordination interactions between VCOF-1 and RuCl3, exhibiting enhanced electrocatalytic performance in the hydrogen evolution reaction when exposed to 0.5 M H2SO4. The results demonstrated that the protonation of VCOF-1@Ru enhanced the electrical conductivity and accelerated the generation of H2 on the catalytically active site Ru. Additionally, VCOF-1@CNT with a tubular structure was prepared by uniformly wrapping VCOF-1 onto carbon nanotubes (CNTs) and using it as a cathode for lithium-sulfur batteries by chemically and physically encapsulating S. The enhanced performance of VCOF-1@CNT was attributed to the effective suppression of lithium polysulfide migration. This suppression was achieved through several mechanisms, including the inverse vulcanization of vinyl on VCOF-1@CNT, the enhancement of material conductivity, and the interaction between N in the materials and Li ions. This study demonstrated a strategy for enhancing material performance by precisely modulating the COF structure at the molecular level.

6.
Inorg Chem ; 63(29): 13568-13575, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38973105

RESUMEN

Capturing and separating the greenhouse gas SF6 from nitrogen N2 have significant greenhouse mitigation potential and economic benefits. We used a pore engineering strategy to manipulate the pore environment of the metal-organic framework (MOF) by incorporating organic functional groups (-NH2). This resulted in an enhanced adsorption of SF6 and separation of the SF6/N2 mixture in the MOF. The introduction of amino (-NH2) groups into YTU-29 resulted in a reduction of the Brunauer-Emmett-Teller surface but an increase in interactions with SF6 within the confined pores. Water-stable YTU-29-NH2 showed a significantly higher SF6 uptake (95.5 cm3/g) than YTU-29 (77.4 cm3/g). The results of the breakthrough experiments show that YTU-29-NH2 has a significantly improved separation performance for SF6/N2 mixtures, with a high SF6 capture of 0.88 mmol/g compared to 0.56 mmol/g by YTU-29. This improvement is due to the suitable pore confinement and accessible -NH2 groups on pore surfaces. Considering its excellent regeneration ability and cycling performance, ultrastable YTU-29-NH2 demonstrates great potential for SF6 capturing and SF6/N2 separation.

7.
J Integr Plant Biol ; 66(7): 1295-1312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695649

RESUMEN

Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Raíces de Plantas , Triticum , Agua , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/metabolismo , Sitios de Carácter Cuantitativo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Fisiológico/genética , Estudio de Asociación del Genoma Completo , Resistencia a la Sequía
8.
J Agric Food Chem ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598771

RESUMEN

Intramuscular fat (IMF) plays a crucial role in enhancing meat quality, enriching meat flavor, and overall improving palatability. In this study, Single-cell RNA sequencing was employed to analyze the longissimus dorsi (LD) obtained from Guangdong small-ear spotted pigs (GDSS, with high IMF) and Yorkshire pigs (YK, with low IMF). GDSS had significantly more Fibro/Adipogenic Progenitor (FAPs), in which the CD9 negative FAPs (FAPCD9-) having adipogenic potential, as demonstrated by in vitro assays using cells originated from mouse muscle. On the other hand, Yorkshire had more fibro-inflammatory progenitors (FIPs, marked with FAPCD9+), presenting higher expression of the FBN1-Integrin α5ß1. FBN1-Integrin α5ß1 could inhibit insulin signaling in FAPCD9-, suppressing adipogenic differentiation. Our results demonstrated that fat-type pigs possess a greater number of FAPCD9-, which are the exclusive cells in muscle capable of differentiating into adipocytes. Moreover, lean-type pigs exhibit higher expression of FBN1-Integrin α5ß1 axis, which inhibits adipocyte differentiation. These results appropriately explain the observed higher IMF content in fat-type pigs.

9.
Hortic Res ; 11(2): uhad292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38414837

RESUMEN

Artemisinin, also known as 'Qinghaosu', is a chemically sesquiterpene lactone containing an endoperoxide bridge. Due to the high activity to kill Plasmodium parasites, artemisinin and its derivatives have continuously served as the foundation for antimalarial therapies. Natural artemisinin is unique to the traditional Chinese medicinal plant Artemisia annua L., and its content in this plant is low. This has motivated the synthesis of this bioactive compound using yeast, tobacco, and Physcomitrium patens systems. However, the artemisinin production in these heterologous hosts is low and cannot fulfil its increasing clinical demand. Therefore, A. annua plants remain the major source of this bioactive component. Recently, the transcriptional regulatory networks related to artemisinin biosynthesis and glandular trichome formation have been extensively studied in A. annua. Various strategies including (i) enhancing the metabolic flux in artemisinin biosynthetic pathway; (ii) blocking competition branch pathways; (iii) using transcription factors (TFs); (iv) increasing peltate glandular secretory trichome (GST) density; (v) applying exogenous factors; and (vi) phytohormones have been used to improve artemisinin yields. Here we summarize recent scientific advances and achievements in artemisinin metabolic engineering, and discuss prospects in the development of high-artemisinin yielding A. annua varieties. This review provides new insights into revealing the transcriptional regulatory networks of other high-value plant-derived natural compounds (e.g., taxol, vinblastine, and camptothecin), as well as glandular trichome formation. It is also helpful for the researchers who intend to promote natural compounds production in other plants species.

10.
Plant Commun ; 5(6): 100850, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38409782

RESUMEN

After germination in the dark, plants produce a shoot apical hook and closed cotyledons to protect the quiescent shoot apical meristem (SAM), which is critical for seedling survival during skotomorphogenesis. The factors that coordinate these processes, particularly SAM repression, remain enigmatic. Plant cuticles, multilayered structures of lipid components on the outermost surface of the aerial epidermis of all land plants, provide protection against desiccation and external environmental stresses. Whether and how cuticles regulate plant development are still unclear. Here, we demonstrate that mutants of BODYGUARD1 (BDG1) and long-chain acyl-CoA synthetase2 (LACS2), key genes involved in cutin biosynthesis, produce a short hypocotyl with an opened apical hook and cotyledons in which the SAM is activated during skotomorphogenesis. Light signaling represses expression of BDG1 and LACS2, as well as cutin biosynthesis. Transcriptome analysis revealed that cuticles are critical for skotomorphogenesis, particularly for the development and function of chloroplasts. Genetic and molecular analyses showed that decreased HOOKLESS1 expression results in apical hook opening in the mutants. When hypoxia-induced expression of LITTLE ZIPPER2 at the SAM promotes organ initiation in the mutants, the de-repressed expression of cell-cycle genes and the cytokinin response induce the growth of true leaves. Our results reveal previously unrecognized developmental functions of the plant cuticle during skotomorphogenesis and demonstrate a mechanism by which light initiates photomorphogenesis through dynamic regulation of cuticle synthesis to induce coordinated and systemic changes in organ development and growth during the skotomorphogenesis-to-photomorphogenesis transition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo
11.
J Colloid Interface Sci ; 662: 333-341, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354560

RESUMEN

It is significant to tailor multifunctional electrode materials for storing sustainable energy in lithium-sulfur (Li-S) batteries and converting intermittent solar energy into H2, facilitated by electricity. In this context, COF-1@CNT obtained through interfacial interaction fulfilled both requisites via post-functionalization. Upon integrating COF-1@CNT with S as the cathode for Li-S batteries, the system exhibited an initial discharge capacity of 1360 mAh g-1. Subsequently, it maintained a sustained actual capacity even after undergoing 200 charge-discharge cycles at 0.5C. The performance improvement was attributed to the optimized conductivity due to the addition of carbon nanotubes (CNTs). Furthermore, the synergistic interaction between the nitrogen of COF-1 and lithium mitigated the shuttle effect in Li-S batteries. In the modified three-electrode electrolytic cell system, COF-1@CNT-Ru produced by COF-1@CNT with RuCl3 showed better electrochemical reactivity for photothermal-assisted hydrogen evolution reaction (HER). This effect was demonstrated by reducing the overpotential to 140 mV relative to the no-photothermal condition (180 mV) at a current density of 10 mA cm-2. This study marked the first simultaneous application of covalent organic frameworks (COFs) based materials in Li-S batteries and photothermal-assisted electrocatalysts. The modified electrocatalytic system held promise as a novel avenue for exploring solar thermal energy utilization.

12.
Nat Commun ; 14(1): 8238, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086830

RESUMEN

The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.


Asunto(s)
Nitrógeno , Triticum , Triticum/metabolismo , Nitrógeno/metabolismo , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Fitomejoramiento
13.
Inorg Chem ; 62(49): 20279-20287, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38032042

RESUMEN

Comprehensive understanding of substituent groups located on the pore surface of metal-organic frameworks (which we call substituent engineering herein) can help to promote gas adsorption and catalytic performance through ligand functionalization. In this work, pore-space-partitioned metal-organic frameworks (PSP MOFs) were selected as a platform to evaluate the effect of organic functional groups on CO2 adsorption, separation, and catalytic conversion. Twelve partitioned acs metal-organic frameworks (pacs-MOFs, named SNNU-25-Rn here) containing different functional groups were synthesized, which can be classified into electron-donor groups (-OH, -NH2, -CH3, and -OCH3) and electron-acceptor groups (-NO2, -F, -Cl, and -Br). The experimental results showed that SNNU-25-Rn with electron donors usually perform better than those with electron acceptors for the comprehensive utilization of CO2. The CO2 uptake of the 12 SNNU-25-Rn MOFs ranged from 30.9 to 183.6 cm3 g-1 at 273 K and 1 bar, depending on the organic functional groups. In particular, SNNU-25-OH showed the highest CO2 adsorption, SNNU-25-CH3 had the highest IAST of CO2/CH4 (36.1), and SNNU-25-(OH)2 showed the best catalytic activity for the CO2 cycloaddition reaction. The -OH functionalized MOFs with excellent performance may be attributed to the Lewis acid-base and hydrogen-bonding interactions between -OH groups and the CO2 molecules. This work modulated the effect of the microenvironment of MOFs on CO2 adsorption, separation, and catalysis in terms of substituents, providing valuable information for the precise design of porous MOFs with a comprehensive utilization of CO2.

14.
Int J Biol Macromol ; 253(Pt 6): 127345, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37820909

RESUMEN

Artemisia annua, a member of the Asteraceae family, remains the primary source of artemisinin. However, the artemisinin content in the existing varieties of this plant is very low. In this study, we found that the environmental factors light and phytohormone abscisic acid (ABA) could synergistically promote the expression of artemisinin biosynthetic genes. Notably, the increased expression levels of those genes regulated by ABA depended on light. Gene expression analysis found that AaABI5, a transcription factor belonging to the basic leucine zipper (bZIP) family, was inducible by the light and ABA treatment. Analysis of AaABI5-overexpressing and -suppressing lines suggested that AaABI5 could enhance artemisinin biosynthesis and activate the expression of four core biosynthetic genes. In addition, the key regulator of light-induced artemisinin biosynthesis, AaHY5, could bind to the promoter of AaABI5 and activate its expression. In conclusion, our results demonstrated that AaABI5 acts as an important molecular junction for the synergistic promotion of artemisinin biosynthesis by light and ABA signals, which provides a candidate gene for developing new germplasms of high-quality A. annua.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antimaláricos/farmacología , Artemisia annua/genética , Artemisia annua/metabolismo , Ácido Abscísico/metabolismo , Artemisininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Inorg Chem ; 62(37): 15195-15205, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656912

RESUMEN

Metal-organic frameworks (MOFs) have attracted extensive attention in methane (CH4) purification and storage. Specially, multinuclear cluster-based MOFs usually have prominent performance because of large cluster size and abundant open metal sites. However, compared to diverse combinations of organic linkers, one MOF with two or more multinuclear clusters is difficult to achieve. In this paper, we demonstrate a mixed multinuclear cluster strategy, which successfully led to three new heterometallic MOFs (SNNU-328-330) with the same common H3TATB [2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine] tritopic linker and six types of multinuclear clusters ([YCd(COO)4(µ2-H2O)], [YCd2(COO)8], [In3(COO)6(µ3-OH)], [In3Eu2(COO)9(µ3-OH)3(µ4-O)], [Y9(COO)12(µ3-OH)14] and [Y2Cd8(COO)16(µ2-H2O)4(µ3-OH)8]). Three MOF adsorbents all show great potentials to remove the impurities (CO2 and C2-hydrocarbons) in natural gas and show prominent high-pressure methane storage capacity. Among them, the ideal adsorbed solution theory separation ratios of equimolar C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 at 298 K for SNNU-328 reach to 29.7-16.0, 19.1-8.2, 33.2-10.3, and 74.3-8.5, which have surpassed many famous MOF adsorbents. Dynamic breakthrough experiments conducted at 273 and 298 K showed that SNNU-330 can separate CH4 from C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 mixtures with the breakthrough interval times of about 48.2, 17.9, 37.2, and 17.1 min g-1 (273 K, 1 bar, v/v = 50/50, 2 mL min-1), respectively. Remarkably, SNNU-329 exhibits extremely high methane storage performance at 298 K with the total uptake and working capacity of 192 cm3 cm-3 (95 bar) and 171 cm3 cm-3 (65 bar) due to the synergistic effects of high surface area, suitable pore sizes, and multiple open metal sites.

16.
J Colloid Interface Sci ; 650(Pt B): 1466-1475, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481784

RESUMEN

It is worthwhile to explore and develop multifunctional composites with unique advantages for energy conversion and utilization. Post-synthetic modification (PSM) strategies can endow novel properties to already excellent covalent organic frameworks (COFs). In this study, we prepared a range of COF-based composites via a multi-step PSM strategy. COF-Ph-OH was acquired by demethylation between anhydrous BBr3 and - OMe, and then, M@COF-Ph-OH was further obtained by forming the N - M - O structure. COF-Ph-OH exhibited a 2e--dominated oxygen reduction reaction (ORR) pathway with high H2O2 selectivity, while M@COF-Ph-OH exhibited a 4e--dominated ORR pathway with low H2O2 selectivity, which was due to the introduction of a metal salt with a d electron structure that facilitated the acquisition of electrons and changed the adsorption energy of the reaction intermediate (*OOH). It was proven that the d electron structure was effective at regulating the reaction pathway of the electrocatalytic ORR. Moreover, Co@COF-Ph-OH showed better 4e- ORR properties than Fe@COF-Ph-OH and Ni@COF-Ph-OH. In addition, compared with the other sulfur-impregnated COF-based composites examined in this study, S-Co@COF-Ph-OH had a larger initial capacity, a weaker impedance, and a stronger cycling durability in Li-S batteries, which was attributed to the unique porous structure ensuring high sulfur utilization, the loaded cobalt accelerating LiPS electrostatic adsorption and promoting LiPS catalytic conversion, and the benzoquinoline ring structure being ultra-stable. This work offers not only a rational and feasible strategy for the synthesis of multifunctional COF-based composites, but also promotes their application in electrochemistry.

17.
J Exp Bot ; 74(18): 5441-5457, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37402253

RESUMEN

Transcriptional regulation is crucial to control of gene expression. Both spatio-temporal expression patterns and expression levels of genes are determined by the interaction between cis-acting elements and trans-acting factors. Numerous studies have focused on the trans-acting factors that mediate transcriptional regulatory networks. However, cis-acting elements, such as enhancers, silencers, transposons, and natural variations in the genome, are also vital for gene expression regulation and could be utilized by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing to improve crop quality and yield. In this review, we discuss current understanding of cis-element-mediated transcriptional regulation in major crops, including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), as well as the latest advancements in gene editing techniques and their applications in crops to highlight prospective strategies for crop breeding.


Asunto(s)
Edición Génica , Oryza , Edición Génica/métodos , Sistemas CRISPR-Cas , Estudios Prospectivos , Genoma de Planta/genética , Fitomejoramiento , Productos Agrícolas/genética , Regulación de la Expresión Génica , Oryza/genética , Transactivadores/genética
18.
J Clin Lab Anal ; 37(8): e24896, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198144

RESUMEN

BACKGROUND: Sudden sensorineural hearing loss (SSNHL) is a multifactorial disease, and its etiology is still unknown. SSNHL may be caused by environmental factors and genetic changes. PCDH15 is associated with susceptibility to hearing loss. The relationship between PCDH15 and SSNHL remains unknown. METHODS: In this study, the potential association between PCDH15 polymorphism and SSNHL in Chinese population was evaluated. Two single nucleotide polymorphisms PCDH15-rs7095441 and rs11004085 in 195 SSNHL patients and 182 healthy controls were determined by TaqMan technology. RESULTS: In Chinese population, the TT genotype and T allele of rs7095441 are associated with increased susceptibility to SSNHL. The relationships between rs7095441 and the degree of hearing loss were analyzed, and TT genotype increased the risk of hearing loss. Among SSNHL patients, patients with TT genotype of rs7095441 have an increased risk of vertigo. CONCLUSION: This study found that the TT genotype of SNP rs7095441 can increase the risk of SSNHL in Chinese population.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Humanos , Pueblos del Este de Asia , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/genética , Polimorfismo de Nucleótido Simple/genética , Protocadherinas
20.
Int J Biol Macromol ; 242(Pt 3): 124910, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37217041

RESUMEN

Ophiorrhiza pumila, as a folk herb belonging to the Rubiaceae family, has become a potential source of camptothecin (CPT), which is a monoterpenoid indole alkaloid with good antitumor property. However, the camptothecin content in this herb is low, and is far from meeting the increasing clinical demand. Understanding the transcriptional regulation of camptothecin biosynthesis provides an effective strategy for improvement of camptothecin yield. Previous studies have demonstrated several transcription factors that are related to camptothecin biosynthesis, while the functions of HD-ZIP members in O. pumila have not been investigated yet. In this study, 32 OpHD-ZIP transcription factor members were genome-wide identified. Phylogenetic tree showed that these OpHD-ZIP proteins are divided into four subfamilies. Based on the transcriptome data, nine OpHD-ZIP genes were shown to be predominantly expressed in O. pumila roots, which were in line with the camptothecin biosynthetic genes. Co-expression analysis showed that OpHD-ZIP7 and OpHD-ZIP20 were potentially related to the modulation of camptothecin biosynthesis. Dual-luciferase reporter assays (Dual-LUC) showed that both OpHD-ZIP7 and OpHD-ZIP20 could activate the expression of camptothecin biosynthetic genes OpIO and OpTDC. In conclusion, this study offered the promising data for exploring the roles of OpHD-ZIP transcription factors in regulating camptothecin biosynthesis.


Asunto(s)
Proteínas de Transporte de Catión , Rubiaceae , Camptotecina , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Proteínas de Transporte de Catión/genética , Retículo Endoplásmico/metabolismo , Zinc/metabolismo , Rubiaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...