Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Nat Commun ; 15(1): 7108, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223143

RESUMEN

Climate warming disproportionately impacts countries in the Global South by increasing extreme heat exposure. However, geographic disparities in adaptation capacity are unclear. Here, we assess global inequality in green spaces, which urban residents critically rely on to mitigate outdoor heat stress. We use remote sensing data to quantify daytime cooling by urban greenery in the warm seasons across the ~500 largest cities globally. We show a striking contrast, with Global South cities having ~70% of the cooling capacity of cities in the Global North (2.5 ± 1.0 °C vs. 3.6 ± 1.7 °C). A similar gap occurs for the cooling adaptation benefits received by an average resident in these cities (2.2 ± 0.9 °C vs. 3.4 ± 1.7 °C). This cooling adaptation inequality is due to discrepancies in green space quantity and quality between cities in the Global North and South, shaped by socioeconomic and natural factors. Our analyses further suggest a vast potential for enhancing cooling adaptation while reducing global inequality.

2.
Nat Commun ; 15(1): 7806, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242563

RESUMEN

Three-dimensional Spatial Transcriptomics has revolutionized our understanding of tissue regionalization, organogenesis, and development. However, existing approaches overlook either spatial information or experiment-induced distortions, leading to significant discrepancies between reconstruction results and in vivo cell locations, causing unreliable downstream analysis. To address these challenges, we propose ST-GEARS (Spatial Transcriptomics GEospatial profile recovery system through AnchoRS). By employing innovative Distributive Constraints into the Optimization scheme, ST-GEARS retrieves anchors with exceeding precision that connect closest spots across sections in vivo. Guided by the anchors, it first rigidly aligns sections, next solves and denoises Elastic Fields to counteract distortions. Through mathematically proved Bi-sectional Fields Application, it eventually recovers the original spatial profile. Studying ST-GEARS across number of sections, sectional distances and sequencing platforms, we observed its outstanding performance on tissue, cell, and gene levels. ST-GEARS provides precise and well-explainable 'gears' between in vivo situations and in vitro analysis, powerfully fueling potential of biological discoveries.


Asunto(s)
Transcriptoma , Animales , Imagenología Tridimensional/métodos , Ratones , Perfilación de la Expresión Génica/métodos , Humanos , Algoritmos
3.
ACS Appl Mater Interfaces ; 16(34): 44817-44829, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39155653

RESUMEN

Cobalt phosphide has received much attention as an efficient catalyst for electrocatalytic hydrodechlorination (EHDC). However, the active species proton hydrogen (H*) is consumed by the hydrogen evolution reaction (HER). Herein, we report a crystal regulation strategy for cobalt phosphate/graphitic nanocarbon/nickel foam (CoPO/GC/NF) catalysts applied for the EHDC of 2,4-dichlorophenoxyacetic acid (2,4-D). Characterization revealed that during the high-temperature phosphatization process, CoPO/GC/NF catalysts developed Co(PO3)2@CoP heterojunctions, enhancing charge transfer at the electrolyte-catalyst interface and water dissociation. The interaction between Co(PO3)2 and CoP induced the reconstitution of CoP into the Co-OH species, which facilitated the production of H* by accelerating the Volmer step, enhancing EHDC activity. Furthermore, Co(PO3)2 species improve the catalyst tolerance, with CoPO/GC/NF(450) maintaining over 71% yield of phenoxyacetic acid (PA) in continuous testing for up to 80 h under high-salt conditions. This work clarifies the surface transformation process of CoP/GC/NF during hydrodechlorination and demonstrates great potential for chlorophenol wastewater remediation.

4.
Adv Mater ; : e2407517, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39139022

RESUMEN

High-performance organic solar cells often rely on halogen-containing solvents, which restrict the photovoltaic industry. Therefore, it is imperative to develop efficient organic photovoltaic materials compatible with halogen-free solvents. Herein, a series of benzo[a]phenazine (BP)-core-based small-molecule acceptors (SMAs) achieved through an isomerization chlorination strategy is presented, comprising unchlorinated NA1, 10-chlorine substituted NA2, 8-chlorine substituted NA3, and 7-chlorine substituted NA4. Theoretical simulations highlight NA3's superior orbit overlap length and tight molecular packing, attributed to interactions between the end group and BP unit. Furthermore, NA3 demonstrates dense 3D network structures and a record electronic coupling of 104.5 meV. These characteristics empower the ortho-xylene (o-XY) processed PM6:NA3 device with superior power conversion efficiency (PCE) of 18.94%, surpassing PM6:NA1 (15.34%), PM6:NA2 (7.18%), and PM6:NA4 (16.02%). Notably, the significantly lower PCE in the PM6:NA2 device is attributed to excessive self-aggregation characteristics of NA2 in o-XY. Importantly, the incorporation of D18-Cl into the PM6:NA3 binary blend enhances crystallographic ordering and increases the exciton diffusion length of the donor phase, resulting in a ternary device efficiency of 19.75% (certified as 19.39%). These findings underscore the significance of incorporating new electron-deficient units in the design of efficient SMAs tailored for environmentally benign solvent processing of OSCs.

5.
Cell ; 187(17): 4488-4519, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178830

RESUMEN

The completion of the Human Genome Project has provided a foundational blueprint for understanding human life. Nonetheless, understanding the intricate mechanisms through which our genetic blueprint is involved in disease or orchestrates development across temporal and spatial dimensions remains a profound scientific challenge. Recent breakthroughs in cellular omics technologies have paved new pathways for understanding the regulation of genomic elements and the relationship between gene expression, cellular functions, and cell fate determination. The advent of spatial omics technologies, encompassing both imaging and sequencing-based methodologies, has enabled a comprehensive understanding of biological processes from a cellular ecosystem perspective. This review offers an updated overview of how spatial omics has advanced our understanding of the translation of genetic information into cellular heterogeneity and tissue structural organization and their dynamic changes over time. It emphasizes the discovery of various biological phenomena, related to organ functionality, embryogenesis, species evolution, and the pathogenesis of diseases.


Asunto(s)
Genómica , Humanos , Animales , Proteómica
6.
Polymers (Basel) ; 16(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204492

RESUMEN

Pipelines extend thousands of kilometers to transport and distribute oil and gas. Given the challenges often faced with corrosion, fatigue, and other issues in steel pipes, the demand for glass fiber-reinforced plastic (GFRP) pipes is increasing in oil and gas gathering and transmission systems. However, the medium that is transported through these pipelines contains multiple acid gases such as CO2 and H2S, as well as ions including Cl-, Ca2+, Mg2+, SO42-, CO32-, and HCO3-. These substances can cause a series of problems, such as aging, debonding, delamination, and fracture. In this study, a series of aging damage experiments were conducted on V-shaped defect GFRP pipes with depths of 2 mm and 5 mm. The aging and failure of GFRP were studied under the combined effects of external force and acidic solution using acoustic emission (AE) techniques. It was found that the acidic aging solution promoted matrix damage, fiber/matrix desorption, and delamination damage in GFRP pipes over a short period. However, the overall aging effect was relatively weak. Based on the experimental data, the SSA-LSSVM algorithm was proposed and applied to the damage pattern recognition of GFRP. An average recognition rate of up to 90% was achieved, indicating that this method is highly suitable for analyzing AE signals related to GFRP damage.

7.
ChemSusChem ; : e202400750, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978158

RESUMEN

As a practical chemical energy conversion technology, electrocatalysis could be used in fields of energy conversion and environmental protection. In recent years, significant research efforts have been devoted to the design and development of high-performance electrocatalysts because the rational design of catalysts is crucial for enhancing electrocatalytic performance. Creating electrocatalysts by forming interactions between different components at the interface is an important means of controlling and improving performance. Therefore, several common interfacial binding forces used for synthesizing electrocatalysts was systematically summarized in this review for the first time. The discussion revolves around the crucial roles these binding forces play in various electrocatalytic reaction processes. Various characterization techniques capable of proving the existence of these interfacial binding forces was also involved in the review. Finally, some prospects and challenges for designing and researching materials through the utilization of interfacial binding forces were presented.

8.
Phytomedicine ; 132: 155841, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971025

RESUMEN

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) represents a prevailing and severe clinical concern, characterized by limited availability of clinically effective treatment strategies. Current evidence endorses matrine's potential as a neuroprotective and analgesic agent for CIPN. Nevertheless, the precise targets and mechanisms of action of matrine remain insufficiently explored, impeding comprehensive pharmacological investigation and clinical application. OBJECTIVE: This study endeavors to elucidate the analgesic and neuroprotective effects of matrine in mice with vincristine-induced neuropathic pain. A focal point is the identification of matrine's specific target and the underlying molecular mechanisms governing its analgesic and neuroprotective actions. METHODS: To discern matrine's analgesic effects in CIPN mice, we conducted behavioral experiments encompassing the Von Frey filament test and Hargreaves Test. Furthermore, we conducted electrophysiological and histopathological assessments involving HE staining, Nissl staining, and Fluoro-Jade B staining to evaluate matrine's effects on neuroprotection within dorsal root ganglia and the spinal cord of CIPN mice. Sequentially, thermal shift assay, GTP hydrolysis assay, and nucleotide exchange assay were executed to validate matrine's inhibitory effects on KRAS. Molecular docking and site-directed mutagenesis experiments were implemented to identify the precise binding pocket of matrine on KRAS. Lastly, matrine's inhibitory effects on downstream signaling pathways of KRAS were confirmed through experiments conducted at animal model. RESULTS: Matrine exhibited a notable increase in mechanical withdrawal threshold and thermal withdrawal latency in vincristine-treated mice. This compound substantially ameliorated the neurofunctional blockade associated with sensory and motor functions induced by vincristine. Moreover, matrine mitigated pathological damage within DRG and the L4-L5 spinal cord regions. The study's MST experiments indicated matrine's substantial elevation of KRAS's melting temperature. The GTP hydrolysis and nucleotide exchange assays revealed concentration-dependent inhibition of KRAS activity by matrine. Molecular docking provided insight into the binding mode of matrine with KRAS, while site-directed mutagenesis verified the specific binding site of matrine on KRAS. Lastly, matrine's inhibition of downstream Raf/Erk1/2 and PI3K/Akt/mTOR signaling pathways of KRAS was confirmed in VCR mice. CONCLUSION: Compared to previous studies, our research has identified matrine as a natural inhibitor of the elusive protein KRAS, often considered "undruggable." Furthermore, this study has revealed that matrine exerts its therapeutic effects on chemotherapy-induced peripheral neuropathy (CIPN) by inhibiting KRAS activation, subsequently suppressing downstream signaling pathways such as Raf/Erk1/2 and PI3K/Akt/mTOR. This investigation signifies the discovery of a novel target for matrine, thus expanding the potential scope of its involvement in KRAS-related biological functions and diseases. These findings hold the promise of providing a crucial experimental foundation for forthcoming drug development initiatives centered around matrine, thereby advancing the field of pharmaceutical research.


Asunto(s)
Alcaloides , Matrinas , Simulación del Acoplamiento Molecular , Neuralgia , Fármacos Neuroprotectores , Quinolizinas , Vincristina , Animales , Alcaloides/farmacología , Quinolizinas/farmacología , Vincristina/farmacología , Neuralgia/tratamiento farmacológico , Neuralgia/inducido químicamente , Ratones , Masculino , Fármacos Neuroprotectores/farmacología , Analgésicos/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad
9.
Nano Lett ; 24(28): 8602-8608, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38954477

RESUMEN

Currently, the construction of anti-ambipolar transistors (AATs) is primarily based on asymmetric heterostructures, which are challenging to fabricate. AATs used for photodetection are accompanied by dark currents that prove difficult to suppress, resulting in reduced sensitivity. This work presents light-triggered AATs based on an in-plane lateral WSe2 homojunction without van der Waals heterostructures. In this device, the WSe2 channel is partially electrically controlled by the back gate due to the screening effect of the bottom electrode, resulting in a homojunction that is dynamically modulated with gate voltage, exhibiting electrostatically reconfigurable and light-triggered anti-ambipolar behaviors. It exhibits high responsivity (188 A/W) and detectivity (8.94 × 1014 Jones) under 635 nm illumination with a low power density of 0.23 µW/cm2, promising a new approach to low-power, high-performance photodetectors. Moreover, the device demonstrates efficient self-driven photodetection. Furthermore, ternary inverters are realized using monolithic WSe2, simplifying the manufacturing of multivalued logic devices.

10.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-39028587

RESUMEN

BACKGROUND: With the rise of large-scale genome sequencing projects, genotyping of thousands of samples has produced immense variant call format (VCF) files. It is becoming increasingly challenging to store, transfer, and analyze these voluminous files. Compression methods have been used to tackle these issues, aiming for both high compression ratio and fast random access. However, existing methods have not yet achieved a satisfactory compromise between these 2 objectives. FINDINGS: To address the aforementioned issue, we introduce GSC (Genotype Sparse Compression), a specialized and refined lossless compression tool for VCF files. In benchmark tests conducted across various open-source datasets, GSC showcased exceptional performance in genotype data compression. Compared with the industry's most advanced tools (namely, GBC and GTC), GSC achieved compression ratios that were higher by 26.9% to 82.4% over GBC and GTC on the datasets, respectively. In lossless compression scenarios, GSC also demonstrated robust performance, with compression ratios 1.5× to 6.5× greater than general-purpose tools like gzip, zstd, and BCFtools-a mode not supported by either GBC or GTC. Achieving such high compression ratios did require some reasonable trade-offs, including longer decompression times, with GSC being 1.2× to 2× slower than GBC, yet 1.1× to 1.4× faster than GTC. Moreover, GSC maintained decompression query speeds that were equivalent to its competitors. In terms of RAM usage, GSC outperformed both counterparts. Overall, GSC's comprehensive performance surpasses that of the most advanced technologies. CONCLUSION: GSC balances high compression ratios with rapid data access, enhancing genomic data management. It supports seamless PLINK binary format conversion, simplifying downstream analysis.


Asunto(s)
Compresión de Datos , Programas Informáticos , Compresión de Datos/métodos , Humanos , Genotipo , Biología Computacional/métodos , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
11.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-39028588

RESUMEN

BACKGROUND: Integrative analysis of spatially resolved transcriptomics datasets empowers a deeper understanding of complex biological systems. However, integrating multiple tissue sections presents challenges for batch effect removal, particularly when the sections are measured by various technologies or collected at different times. FINDINGS: We propose spatiAlign, an unsupervised contrastive learning model that employs the expression of all measured genes and the spatial location of cells, to integrate multiple tissue sections. It enables the joint downstream analysis of multiple datasets not only in low-dimensional embeddings but also in the reconstructed full expression space. CONCLUSIONS: In benchmarking analysis, spatiAlign outperforms state-of-the-art methods in learning joint and discriminative representations for tissue sections, each potentially characterized by complex batch effects or distinct biological characteristics. Furthermore, we demonstrate the benefits of spatiAlign for the integrative analysis of time-series brain sections, including spatial clustering, differential expression analysis, and particularly trajectory inference that requires a corrected gene expression matrix.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Aprendizaje Automático no Supervisado , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Humanos , Algoritmos , Animales , Análisis por Conglomerados , Encéfalo/metabolismo
12.
ACS Appl Mater Interfaces ; 16(26): 33885-33896, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888910

RESUMEN

Donor (D)-acceptor (A) copolymer-based organic mixed ionic-electronic conductors (OMIECs) exhibit intrinsic environmental stability for they have tailored energy levels. However, their figure-of-merit (µC*) is still falling behind the D-D polymers because of morphology deterioration during the electrochemical doping process. Herein, we developed two D-A copolymers with precisely regulated backbone curvature, namely PTBT-P and PTTBT-P. Compared to the curved PTBT-P and previously reported copolymers, PTTBT-P better keeps its backbone linear, leading to a long-range ordered doping morphology, which is revealed by the in operando X-ray technique. This optimized doping morphology enables a significantly improved operando charge mobility (µ) of 2.44 cm2 V-1 s-1 and a µC* value of 342 F cm-1 V-1 s-1, one of the highest values in D-A copolymer based on OECTs. Besides, we fabricated PTTBT-P-based electrochemical random-access memories and achieved ideal and robust conductance modulation. This study highlights the critical role of backbone curvature control in the optimization of doping morphology for efficient and robust organic electrochemical devices.

13.
Environ Sci Technol ; 58(27): 12237-12248, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934294

RESUMEN

Pertechnetate (99TcO4-), a physiologically toxic radioactive anion, is of great concern due to its high mobility in environmental contamination remediation. Although the soluble oxyanion can be photoreduced to sparingly soluble TcO2·nH2O, its effective removal from a strongly acidic aqueous solution remains a challenge. Here, we found that low-crystalline nitrogen-doped titanium oxide (N-TiO2, 0.6 g L-1) could effectively uptake perrhenate (ReO4-, 10 mg L-1, a nonradioactive surrogate for TcO4-) with 50.8% during 360 min under simulated sunlight irradiation at pH 1.0, but P25 and anatase could not. The nitrogen active center formed by trace nitrogen doping in N-TiO2 can promote the separation and transfer of photogenerated carriers. The positive valence band value of N-TiO2 is slightly higher than those of P25 and anatase, which means that the photogenerated holes have a stronger oxidizability. These holes are involved in the formation of strong reducing •CO2- radicals from formic acid oxidation. The active radicals convert ReO4- to Re(VI), which is subsequently disproportionated to Re(IV) and Re(VII). Effective photocatalytic reduction/removal of Re(VII)/Tc(VII) is performed on the material, which may be considered a potential and convenient strategy for technetium decontamination and extraction in a strongly acidic aqueous solution.


Asunto(s)
Titanio , Catálisis , Titanio/química , Oxidación-Reducción , Renio/química , Agua/química , Concentración de Iones de Hidrógeno , Soluciones
14.
Cell Death Dis ; 15(6): 436, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902268

RESUMEN

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, necessitating the identification of novel therapeutic targets. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is involved in biological processes critical to cancer progression, such as regulation of solute carrier transporter proteins and metabolic pathways, including mTORC1. However, the metabolic processes governed by LAPTM4B and its role in oncogenesis remain unknown. In this study, we conducted unbiased metabolomic screens to uncover the metabolic landscape regulated by LAPTM4B. We observed common metabolic changes in several knockout cell models suggesting of a role for LAPTM4B in suppressing ferroptosis. Through a series of cell-based assays and animal experiments, we demonstrate that LAPTM4B protects tumor cells from erastin-induced ferroptosis both in vitro and in vivo. Mechanistically, LAPTM4B suppresses ferroptosis by inhibiting NEDD4L/ZRANB1 mediated ubiquitination and subsequent proteasomal degradation of the cystine-glutamate antiporter SLC7A11. Furthermore, metabolomic profiling of cancer cells revealed that LAPTM4B knockout leads to a significant enrichment of ferroptosis and associated metabolic alterations. By integrating results from cellular assays, patient tissue samples, an animal model, and cancer databases, this study highlights the clinical relevance of the LAPTM4B-SLC7A11-ferroptosis signaling axis in NSCLC progression and identifies it as a potential target for the development of cancer therapeutics.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Complejo de la Endopetidasa Proteasomal , Ubiquitina , Ferroptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ratones , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ubiquitinación , Ratones Desnudos , Proteolisis/efectos de los fármacos
15.
Nanomicro Lett ; 16(1): 189, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698120

RESUMEN

Monolithic textured perovskite/silicon tandem solar cells (TSCs) are expected to achieve maximum light capture at the lowest cost, potentially exhibiting the best power conversion efficiency. However, it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometer-size pyramids. Here, we introduced a bulky organic molecule (4-fluorobenzylamine hydroiodide (F-PMAI)) as a perovskite additive. It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F- and FA+ and reduce (111) facet surface energy due to enhanced adsorption energy of F-PMAI on the (111) facet. Besides, the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth, which can passivate interface defects through strong interaction between F-PMA+ and undercoordinated Pb2+/I-. As a result, the additive facilitates the formation of large perovskite grains and (111) preferred orientation with a reduced trap-state density, thereby promoting charge carrier transportation, and enhancing device performance and stability. The perovskite/silicon TSCs achieved a champion efficiency of 30.05% based on a silicon thin film tunneling junction. In addition, the devices exhibit excellent long-term thermal and light stability without encapsulation. This work provides an effective strategy for achieving efficient and stable TSCs.

16.
Nat Commun ; 15(1): 2906, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575578

RESUMEN

Mechano-sensitive hair-like sensilla (MSHS) have an ingenious and compact three-dimensional structure and have evolved widely in living organisms to perceive multidirectional mechanical signals. Nearly all MSHS are iontronic or electronic, including their biomimetic counterparts. Here, an all-optical mechano-sensor mimicking MSHS is prototyped and integrated based on a thin-walled glass microbubble as a flexible whispering-gallery-mode resonator. The minimalist integrated device has a good directionality of 32.31 dB in the radial plane of the micro-hair and can detect multidirectional displacements and forces as small as 70 nm and 0.9 µN, respectively. The device can also detect displacements and forces in the axial direction of the micro-hair as small as 2.29 nm and 3.65 µN, respectively, and perceive different vibrations. This mechano-sensor works well as a real-time, directional mechano-sensory whisker in a quadruped cat-type robot, showing its potential for innovative mechano-transduction, artificial perception, and robotics applications.


Asunto(s)
Robótica , Sensilos , Animales , Cabello , Fenómenos Mecánicos , Electrónica
17.
Mar Drugs ; 22(4)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38667761

RESUMEN

In order to explore the extraction and activity of macroalge glycolipids, six macroalgae (Bangia fusco-purpurea, Gelidium amansii, Gloiopeltis furcata, Gracilariopsis lemaneiformis, Gracilaria sp. and Pyropia yezoensis) glycolipids were extracted with five different solvents firstly. Considering the yield and glycolipids concentration of extracts, Bangia fusco-purpurea, Gracilaria sp. and Pyropia yezoensis were selected from six species of marine macroalgae as the raw materials for the extraction of glycolipids. The effects of the volume score of methanol, solid-liquid ratio, extraction temperature, extraction time and ultrasonic power on the yield and glycolipids concentration of extracts of the above three macroalgae were analyzed through a series of single-factor experiments. By analyzing the antioxidant activity in vitro, moisture absorption and moisturizing activity, the extraction process of Bangia fusco-purpurea glycolipids was further optimized by response surface method to obtain suitable conditions for glycolipid extraction (solid-liquid ratio of 1:27 g/mL, extraction temperature of 48 °C, extraction time of 98 min and ultrasonic power of 450 W). Bangia fusco-purpurea extracts exhibited a certain scavenging effect on DPPH free radicals, as well as good moisture-absorption and moisture retaining activities. Two glycolipids were isolated from Bangia fusco-purpurea by liquid-liquid extraction, silica gel column chromatography and thin-layer chromatography, and they showed good scavenging activities against DPPH free radicals and total antioxidant capacity. Their scavenging activities against DPPH free radicals were about 60% at 1600 µg/mL, and total antioxidant capacity was better than that of Trolox. Among them, the moisturizing activity of a glycolipid was close to that of sorbierite and sodium alginate. These two glycolipids exhibited big application potential as food humectants and antioxidants.


Asunto(s)
Antioxidantes , Glucolípidos , Algas Marinas , Glucolípidos/química , Glucolípidos/aislamiento & purificación , Glucolípidos/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Algas Marinas/química , Rhodophyta/química , Solventes/química , Picratos/química
18.
Nat Genet ; 56(5): 953-969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627598

RESUMEN

The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/ß-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.


Asunto(s)
Homeostasis , Regeneración Hepática , Hígado , Vía de Señalización Wnt , Animales , Regeneración Hepática/genética , Ratones , Hígado/metabolismo , Vía de Señalización Wnt/genética , Hepatocitos/metabolismo , Hepatocitos/citología , Proliferación Celular/genética , Análisis de la Célula Individual , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Transcriptoma , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino
19.
Cell Rep Methods ; 4(5): 100754, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38614089

RESUMEN

Precision medicine's emphasis on individual genetic variants highlights the importance of haplotype-resolved assembly, a computational challenge in bioinformatics given its combinatorial nature. While classical algorithms have made strides in addressing this issue, the potential of quantum computing remains largely untapped. Here, we present the vehicle routing problem (VRP) assembler: an approach that transforms this task into a vehicle routing problem, an optimization formulation solvable on a quantum computer. We demonstrate its potential and feasibility through a proof of concept on short synthetic diploid and triploid genomes using a D-Wave quantum annealer. To tackle larger-scale assembly problems, we integrate the VRP assembler with Google's OR-Tools, achieving a haplotype-resolved local assembly across the human major histocompatibility complex (MHC) region. Our results show encouraging performance compared to Hifiasm with phasing accuracy approaching the theoretical limit, underscoring the promising future of quantum computing in bioinformatics.


Asunto(s)
Diploidia , Haplotipos , Poliploidía , Humanos , Haplotipos/genética , Biología Computacional/métodos , Algoritmos , Teoría Cuántica , Genoma Humano , Complejo Mayor de Histocompatibilidad/genética
20.
GigaByte ; 2024: gigabyte111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434930

RESUMEN

The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...