RESUMEN
OBJECTIVES: To explore the effects of iris xanthin on airway inflammation, airway remodeling, and the high mobility group box 1 protein (HMGB1)/Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in asthmatic young mice. METHODS: Sixty male BALB/c young mice were randomly assigned into six groups: a blank group, a model group, a dexamethasone group, and low, medium, and high dose groups of iris xanthin, with ten mice per group. Asthma models were induced through intraperitoneal injections of a sensitizing agent [ovalbumin (OVA) 20 µg + aluminum hydroxide gel 2 mg], followed by 4% OVA aerosol inhalation. Lung function was measured using a pulmonary function tester to determine lung volume (LV), resting ventilation per minute (VE), and airway reactivity (Penh value). Hematoxylin-eosin (HE) staining was employed to examine and analyze airway remodeling. The contents of interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α) in bronchoalveolar lavage fluid were quantified using ELISA. Real-time fluorescence quantitative polymerase chain reaction and Western blot analysis were used to assess the expression of HMGB1/TLR4/NF-κB pathway-related mRNA and proteins in lung tissues. RESULTS: Compared to the model group, the dexamethasone and iris xanthin-treated groups (low, medium, and high doses) exhibited significant increases in LV and VE (P<0.05), with incremental dose-dependent increases observed in the iris xanthin groups. Additionally, Penh values, IL-1ß, IL-6, TNF-α, and airway remodeling indicators, along with mRNA levels of HMGB1, TLR4, and NF-κB p65 and protein levels of HMGB1, TLR4, and p-NF-κB p65, were all reduced (P<0.05) in a dose-dependent manner. When compared to the dexamethasone group, the low and medium dose iris xanthin groups showed decreases in LV and VE (P<0.05), whereas Penh values, IL-1ß, IL-6, TNF-α, and airway remodeling indicators, along with mRNA levels of HMGB1, TLR4, NF-κB p65 and protein levels of HMGB1, TLR4, and p-NF-κB p65, were increased (P<0.05). No significant differences were noted in these indices between the high dose iris xanthin group and the dexamethasone group (P>0.05). CONCLUSIONS: Iris xanthin can effectively alleviates airway inflammation and inhibits airway remodeling in asthmatic young mice, possibly through the suppression of the HMGB1/TLR4/NF-κB pathway.
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Proteína HMGB1 , Ratones Endogámicos BALB C , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Animales , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Asma/tratamiento farmacológico , Asma/metabolismo , Masculino , Ratones , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
In humans and animals, exposure to changes in internal or external environments causes acute stress, which changes sleep and enhances neurochemical, neuroendocrine, and sympathetic activities. Repeated stress responses play an essential role in the pathogenesis of psychiatric diseases and sleep disorders. However, the underlying mechanism of sleep changes and anxiety disorders in response to acute stress is not well established. In the current study, the effects of restraint stress (RS) on anxiety and sleep-wake cycles in mice were investigated. We found that after RS, the mice showed anxiety-like behavior after RS manipulation and increased the amounts of both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep in the dark period. The increase in sleep time was mainly due to the increased number of episodes of NREM and REM sleep during the dark period. In addition, the mice showed an elevation of the EEG power spectrum of both NREM and REM sleep 2 h after RS manipulation. There was a significant reduction in the EEG power spectrum of both NREM and REM sleep during the darkperiod in the RS condition. The expression of the c-Fos protein was significantly increased in the parabrachial nucleus, bed nucleus of the stria terminalis, central amygdala, and paraventricular hypothalamus by RS manipulation. Altogether, the findings from the present study indicated that neural circuits from the parabrachial nucleus might regulate anxiety and sleep responses to acute stress, and suggest a potential therapeutic target for RS induced anxiety and sleep alterations.
RESUMEN
Oxymatrine (OXY) has antioxidative and antiinflammatory activities. In the present work, we investigate the effects of OXY on gastric ulcer models and elucidate the underlying mechanisms of action. Ethanol, indometacin, and restraint water immersion stress-induced ulcerated models were used. The ulcer area was measured, and samples of gastric tissue were taken for pathological, histochemical, and biochemical analyses. OXY effectively reduced the area of gastric ulcers and improved the pathological changes of ulcerated tissue. OXY enhanced expression of Bcl-2, reduced Bax protein expression, and inhibited alcohol-induced apoptotic death in both ulcerated tissue and human gastric epithelial cells. OXY increased the prostaglandin E2 level and improved oxidative stress (malondialdehyde, superoxide dismutase, catalase, and nitric oxide) and inflammatory parameters (TNF-a, IL-6, and IL-1) of ulcer tissue. OXY prevented an inflammatory response via decreasing expression of p38, p-ERK, p-JNK, and inhibiting NF-κB p65 translocation from the cytoplasm to the nucleus. Our results reveal that OXY has remarkable protective effects on gastric ulcers. The action of OXY may be mediated via suppression of gastric inflammatory reactions, oxidative stress, and pro-apoptotic actions, which were the results of blockades of MAPKs and NF-κB signaling pathways. Our results provide evidence for the beneficial effects of OXY for treating peptic ulcers.