Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39056722

RESUMEN

Salinization of freshwater ecosystems is a pressing global issue. Changes in salinity can exert severe pressure on aquatic animals and jeopardize their survival. Procambarus clarkii is a valuable freshwater aquaculture species that exhibits some degree of salinity tolerance, making it an excellent research model for freshwater aquaculture species facing salinity stress. In the present study, crayfish were exposed to acute low salt (6 ppt) and high salt (18 ppt) conditions. The organisms were continuously monitored at 6, 24, and 72 h using RNA-Seq to investigate the mechanisms of salt stress resistance. Transcriptome analysis revealed that the crayfish responded to salinity stress with numerous differentially expressed genes, and most of different expression genes was observed in high salinity group for 24h. GO and KEGG enrichment analyses indicated that metabolic pathways were the primary response pathways in crayfish under salinity stress. This suggests that crayfish may use metabolic pathways to compensate for energy loss caused by osmotic stress. Furthermore, gene expression analysis revealed the differential expression of immune and antioxidant-related pathway genes under salinity stress, implying that salinity stress induces immune disorders in crayfish. More genes related to cell proliferation, differentiation, and apoptosis, such as the Foxo, Wnt, Hippo, and Notch signaling pathways, responded to high-salinity stress. This suggests that regulating the cellular replication cycle and accelerating apoptosis may be necessary for crayfish to cope with high-salinity stress. Additionally, we identified 36 solute carrier family (SLC) genes related to ion transport, depicting possible ion exchange mechanisms in crayfish under salinity stress. These findings aimed to establish a foundation for understanding crustacean responses to salinity stress and their osmoregulatory mechanisms.

2.
Fish Shellfish Immunol ; 139: 108926, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37406893

RESUMEN

The greasyback shrimp, Metapenaeus ensis, suffers from ammonia-N stress during intensive factory aquaculture. Optimizing ammonia-N stress tolerance has become an important issue in M. ensis breeding. The metabolic and adaptive mechanisms of ammonia-N toxicity in M. ensis have not been comprehensively understood yet. In this study, a large number of potential simple sequence repeats (SSRs) in the transcriptome of M. ensis were identified. Differentially expressed genes (DEGs) in the gill and hepatopancreas at 24 h post-challenges under high concentrations of ammonia-N treatment were detected. We obtained 20,108,851-27,681,918 clean reads from the control and high groups, assembled and clustered a total of 103,174 unigenes with an average of 876 bp and an N50 of 1189 bp. Comparative transcriptome analyses identified 2000 different expressed genes in the gill and 2010 different expressed genes in the hepatopancreas, a large number of which were related to immune function, oxidative stress, metabolic regulation, and apoptosis. The results suggest that M. ensis may counteract ammonia-N toxicity at the transcriptome level by increasing the expression of genes related to immune stress and detoxification metabolism, and that selected genes may serve as molecular indicators of ammonia-N. By exploring the genetic basis of M. ensis' ammonia-N stress adaptation, we constructed the genetic networks for ammonia-N adaptation. These findings will accelerate the understanding of M. ensis' ammonia-N adaptation, contribute to the research of future breeding, and promote the level of factory aquaculture of M. ensis.


Asunto(s)
Penaeidae , Animales , Amoníaco/toxicidad , Amoníaco/metabolismo , Branquias , Perfilación de la Expresión Génica , Transcriptoma
3.
Front Physiol ; 14: 1118341, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935747

RESUMEN

Background: Salinity is one of the main influencing factors in the culture environment and is extremely important for the survival, growth, development and reproduction of aquatic animals. Methods: In this study, a comparative transcriptome analysis (maintained for 45 days in three different salinities, 30 psu (HC group), 18 psu (MC group) and 3 psu (LC group)) was performed by high-throughput sequencing of economically cultured Penaeus monodon. P. monodon gill tissues from each treatment were collected for RNA-seq analysis to identify potential genes and pathways in response to low salinity stress. Results: A total of 64,475 unigenes were annotated in this study. There were 1,140 upregulated genes and 1,531 downregulated genes observed in the LC vs. HC group and 1,000 upregulated genes and 1,062 downregulated genes observed in the MC vs. HC group. In the LC vs. HC group, 583 DEGs significantly mapped to 37 signaling pathways, such as the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and PI3K-Akt signaling pathway; in the MC vs. HC group, 444 DEGs significantly mapped to 28 signaling pathways, such as the MAPK signaling pathway, Hippo signaling pathway and calcium signaling pathway. These pathways were significantly associated mainly with signal transduction, immunity and metabolism. Conclusions: These results suggest that low salinity stress may affect regulatory mechanisms such as metabolism, immunity, and signal transduction in addition to osmolarity in P. monodon. The greater the difference in salinity, the more significant the difference in genes. This study provides some guidance for understanding the low-salt domestication culture of P. monodon.

4.
Fish Shellfish Immunol ; 131: 1166-1172, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36410647

RESUMEN

The decrease of seawater pH can affect the metabolism, acid-base balance, immune response and immunoprotease activity of aquatic animals, leading to aquatic animal stress, impairing the immune system of aquatic animals and weakening disease resistance, etc. In this study, we performed high-throughput sequencing analysis of the hepatopancreas transcriptome library of low pH stress penaeus monodon, and after sequencing quality control, a total of 43488612-56271828 Clean Reads were obtained, and GO annotation and KEGG pathway enrichment analysis were performed on the obtained Clean Reads, and a total of 395 DEGs were identified. we mined 10 differentially expressed and found that they were significantly enriched in the Metabolic pathways (ko01100), Biosynthesis of secondary metabolites (ko01110), Nitrogen metabolism (ko00910) pathways, such as PIGA, DGAT1, DGAT2, UBE2E on Metabolic pathways; UGT, GLT1, TIM genes on Biosynthesis of secondary metabolites; CA, CA2, CA4 genes on Nitrogen metabolism, are involved in lipid metabolism, induction of oxidative stress and inflammation in the muscular body of spot prawns. These genes play an important role in lipid metabolism, induction of oxidative stress and inflammatory response in the muscle of the shrimp. In summary, these genes provide valuable reference information for future breeding of low pH-tolerant shrimp.


Asunto(s)
Hepatopáncreas , Penaeidae , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Nitrógeno/metabolismo , Concentración de Iones de Hidrógeno
5.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293554

RESUMEN

Doublesex (Dsx) is a polymorphic transcription factor of the DMRTs family, which is involved in male sex trait development and controls sexual dimorphism at different developmental stages in arthropods. However, the transcriptional regulation of the Dsx gene is largely unknown in decapods. In this study, we reported the cDNA sequence of PmDsx in Penaeus monodon, which encodes a 257 amino acid polypeptide. It shared many similarities with Dsx homologs and has a close relationship in the phylogeny of different species. We demonstrated that the expression of the male sex differentiation gene Dsx was predominantly expressed in the P. monodon testis, and that PmDsx dsRNA injection significantly decreased the expression of the insulin-like androgenic gland hormone (IAG) and male sex-determining gene while increasing the expression of the female sex-determining gene. We also identified a 5'-flanking region of PmIAG that had two potential cis-regulatory elements (CREs) for the PmDsx transcription. Further, the dual-luciferase reporter analysis and truncated mutagenesis revealed that PmDsx overexpression significantly promoted the transcriptional activity of the PmIAG promoter via a specific CRE. These results suggest that PmDsx is engaged in male reproductive development and positively regulates the transcription of the PmIAG by specifically binding upstream of the promoter of the PmIAG. It provides a theoretical basis for exploring the sexual regulation pathway and evolutionary dynamics of Dmrt family genes in P. monodon.


Asunto(s)
Insulinas , Penaeidae , Animales , Masculino , Femenino , Penaeidae/genética , Secuencia de Aminoácidos , ADN Complementario , Secuencia de Bases , Filogenia , Factores de Transcripción/genética , Hormonas , Aminoácidos/genética , Insulinas/genética
6.
Fish Shellfish Immunol ; 128: 7-18, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35843525

RESUMEN

Members of the E74-like factor (ELF) subfamily are involved in the immune stress process of organisms by regulating immune responses and the development of immune-related cells. PmE74 of Penaeus monodon was characterized and functionally analyzed in this study. The full length of PmE74 was 3106 bp, with a 5'-UTR of 297 bp, and a 3'-UTR of 460 bp. The ORF (Open reading frame) was 2349 bp and encoded 782 amino acids. Domain analysis showed that PmE74 contains a typical Ets domain. Multiple sequence alignment and phylogenetic tree analysis showed that PmE74 clustered with Litopenaeus vannamei E74 and displayed significant similarity (98.98%). PmE74 was expressed in all tissues tested in P. monodon, with the highest levels of expression observed in the testis, intestine, and epidermis. Different pathogen stimulation studies have revealed that PmE74 expression varies in response to different pathogen stimuli. A 96-h acute low salt stress study revealed that PmE74 in the hepatopancreas was upregulated and downregulated in the salinity 17 group and considerably downregulated in the salinity 3 group, whereas PmE74 in gill tissue was considerably downregulated in both groups. Further, by knocking down PmE74 and learning the trends of its linkage genes PmAQP1, PmNKA, PmE75, PmFtz-f1, PmEcR, and PmRXR in response to low salt stress, it was further indicated that PmE74 could have a vital role in the regulation of low salt stress. The SNP test revealed that PmE74-In1-53 was significantly associated with low salt tolerance traits in P. monodon (P < 0.05). The findings of this study can aid in the advancement of molecular marker-assisted breeding in P. monodon, as well as provide fundamental data and methodologies for further investigation of its low salt tolerance strains in P. monodon.


Asunto(s)
Penaeidae , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Secuencia de Bases , Penaeidae/genética , Filogenia , Polimorfismo de Nucleótido Simple , Tolerancia a la Sal/genética
7.
Genomics ; 114(4): 110415, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35718088

RESUMEN

Procambarus clarkii is an important economic species in China, and exhibit heat and cold tolerance in the main culture regions. To understand the mechanisms, we analyzed the hepatopancreas transcriptome of P. clarkii treated at 10 °C, 25 °C, and 30 °C, then 2092 DEGs and 6929 DEGs were found in 30 °C stress group and 10 °C stress group, respectively. KEGG pathway enrichment results showed that immune pathway is the main stress pathway for 10 °C treatment and metabolic pathway is the main response pathway for 30 °C treatment, which implies low temperature stress induces the damage of the immune system and increases the susceptibility of bacteria while the body response to high temperature stress through metabolic adjustment. In addition, flow cytometry proved that both high and low temperature stress caused different degrees of apoptosis of hemocytes, and dynamic transcription heat map analysis also identified the differential expression of HSPs family genes and apoptosis pathway genes under different heat stresses. This indicates that preventing damaged protein misfolding and accelerating cell apoptosis are necessary mechanisms for P. clarkii to cope with high and low temperature stress. Our research has deepened our understanding of the complex molecular mechanisms of P. clarkii in response to acute temperature stress, and provided a potential strategy for aquatic animals to relieve environmental duress.


Asunto(s)
Astacoidea , Transcriptoma , Animales , Astacoidea/genética , Astacoidea/metabolismo , Perfilación de la Expresión Génica , Hepatopáncreas/metabolismo , Temperatura
8.
Artículo en Inglés | MEDLINE | ID: mdl-33316578

RESUMEN

Temperature is an important environmental factor in the living environment of crustaceans. Changes in temperature can affect their normal growth and metabolism and even cause bacterial disease. Currently, the potential anti-reverse molecular reaction mechanism of crustaceans during high-temperature conditions has not yet been fully understood. Therefore, in this study, we characterised the transcriptome of Procambarus clarkii using RNA sequencing and performed a comparison between super-high-temperature treated samples and controls. After assembly and annotation, 81,097 unigenes with an average length of 069 bp and 358 differentially expressed genes (DEGs) were identified. Among these DEGs, 264 were differentially upregulated and 94 were differentially downregulated. To obtain comprehensive gene function information, we queried seven databases, namely, Nr, Nt, Pfam, KOG, Swiss-Prot, KEGG, and GO to annotate gene functions. Transcriptome analysis revealed that the identified DEGs have significant effects on immune-related pathways, including lysosomal and phagosomal pathways, and that super-high-temperature conditions can cause disease in P. clarkii. Some significantly downregulated genes are involved in oxidative phosphorylation and the PPAR signalling pathway; this suggests a metabolic imbalance in P. clarkia during extreme temperature conditions. In addition, elevated temperature changed the expression patterns of key apoptosis genes XIAP, CASP2, CASP2, CASP8, and CYTC, thereby confirming that high-temperature conditions caused immune disorders, metabolic imbalance, and, finally, triggered apoptosis. Our results provide a useful foundation for understanding the molecular mechanisms underlying the responses of P. clarkii during high-temperature conditions.


Asunto(s)
Astacoidea/genética , Respuesta al Choque Térmico , Transcriptoma , Animales , Apoptosis , Acuicultura , Astacoidea/inmunología , Astacoidea/fisiología , Regulación de la Expresión Génica , Enfermedades del Sistema Inmune/veterinaria
9.
Zhonghua Yi Xue Za Zhi ; 88(20): 1402-4, 2008 May 27.
Artículo en Chino | MEDLINE | ID: mdl-18953879

RESUMEN

OBJECTIVE: To investigate the relation of the frequency of tumor necrosis factor (TNF)-alpha - 308, TNF-beta + 252, IL-1 beta + 3954, and IL-10 - 1082 gene polymorphisms to female breast cancer. METHODS: Peripheral blood samples were collected from 102 breast cancer patients with cachexia and 120 breast cancer patients without cachexia. Biallelic polymorphisms were performed by analyzing the incision enzyme-digested DNA fragment obtained using PCR. RESULTS: The allele frequencies of TNF-beta + 252, IL-1 beta + 3954, and IL-10 -1082 in the patients with cachexia were comparable with those of the patients without cachexia (all P > 0.05). The patients with cachexia showed a significantly higher prevalence of TNF2 than the patients without cachexia (20.6 % vs 10.0 %, P = 0.027). Logistic regression analysis indicated TNF2 as a risk factor for cachexia in breast cancer ( OR = 2.333, 95% CI: 1.085-5.017). CONCLUSION: TNF2 plays an important role in the susceptibility of cachexia in breast cancer.


Asunto(s)
Neoplasias de la Mama/complicaciones , Caquexia/genética , Citocinas/genética , Polimorfismo Genético , Adulto , Anciano , Alelos , Caquexia/etiología , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Interleucina-10/genética , Interleucina-1beta/genética , Modelos Logísticos , Linfotoxina-alfa/genética , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/genética
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 10(4): 307-9, 2002 Aug.
Artículo en Chino | MEDLINE | ID: mdl-12513763

RESUMEN

To study the telomerase activity change in patients with CML different phases, telomerase PCR-ELISA method was used. Results showed that telomerase activity of normal bone marrow cells was low. The telomerase activity in CML at any phase was higher than that in normal bone marrow (P < 0.05). The telomerase activity in accelerated and acute transformation phases was higher than that in chronic phase (P < 0.05), but there was no significant difference between accelerated phase and acute transformation phase. It was concluded that telomerase activity could be used as an useful marker for evaluating development of course and curative effect of CML.


Asunto(s)
Células de la Médula Ósea/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Telomerasa/metabolismo , Adolescente , Adulto , Anciano , Biomarcadores , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...