RESUMEN
The development of a reversal agent that can rapidly reverse clinically used nondepolarizing neuromuscular blocking agents (NMBAs) has long been a challenge. Here, we report the synthesis of a series of highly water-soluble acyclic cucurbit[n]urils (acCBs). Systematic structure-activity relationship studies reveal that introducing two propylidene units on the peripheral benzene rings not only remarkably improves the activity of the corresponding derivative acCB6 (FY 3451) in reversing the neuromuscular block of rocuronium, cisatracurium, vecuronium, and pancuronium, the four clinically used NMBAs, through stable inclusion, but also allows for high water-solubility as well as a maximum tolerated dose (2000 mg/kg on rats). In vivo experiments with rats show that, at the identical dose of 25 mg/kg, for rocuronium, vecuronium, and pancuronium, acCB6 can achieve a recovery time shorter than that of sugammadex for rocuronium and, at the dose of 100 mg/kg, realize comparably rapid reversal for cisatracurium.
Asunto(s)
Bloqueantes Neuromusculares , Solubilidad , Animales , Relación Estructura-Actividad , Bloqueantes Neuromusculares/farmacología , Bloqueantes Neuromusculares/síntesis química , Ratas , Masculino , Agua/química , Ratas Sprague-Dawley , Imidazoles/farmacología , Imidazoles/química , Imidazoles/síntesis química , Bloqueo NeuromuscularRESUMEN
The accurate construction of mono-, bi- and multi-layer networks has been an important challenge, especially for bi- and multi-layer networks. Monolayer, bilayer, sandwich bilayer, four-layer, and multi-layer two-dimensional pillararene-type metal-organic coordination networks have been constructed from functionalized pillar[5]arene and pillar[6]arene by utilizing the coordination interaction of cobalt and copper ions and combining with temperature control and guest induction. These two-dimensional coordination networks exhibit the excellent plasticity of pillararenes and structural variety, which are characterized by X-ray single crystal diffraction and PXRD, confirming that pillararenes units can function as excellent tunable scaffolds for structural regulation. Two-dimensional chiral double-layer structure products are also constructed from R- and S-pillar[6]arene, which are obtained by high-performance liquid chromatography. Atomic force microscopic imaging confirms the thicknesses of these networks. Moreover, these networks also exhibit high iodine adsorption capacity in aqueous environments at ambient temperature. The monolayer, bilayer, sandwich bilayer, four-layer and multi-layer structures of the pillararene-type networks represent a new facile supramolecular self-assembly strategy and platform for designing more mono-, bi- and multi-layer two-dimensional nanomaterials and chiral two-dimensional double-layer structures provide a new method for the construction of more two-dimensional chiral polymers.
RESUMEN
A series of slide-ring polyrotaxanes (SRPs) have been constructed by the solvent-free blending of a ditopic pillar[5]arene (DP5A) and polyisoprene (PIP) after thermal annealing. Solid-state 13C NMR experiments supported the fact that the pillar[5]arene rings of DP5A were threaded by PIP chains to afford physically interlocked networks. Tensile tests revealed that 1% of DP5A can improve the elongation at break from 50 to 239%, the tensile modulus from 2.1 to 3.9 MPa, and the toughness from 0.35 to 4.5 MJ/m3. Impact and puncture resistance experiments show that the DP5A-doped materials exhibit remarkable enhancement of protective and impalement-resistant performance. The samples can be also recycled repeatedly due to their physical crosslinking nature. The important stress delocalization effects have been attributed to the pulley effect of DP5A in the SRP materials, which represents a supramolecular approach for improving the performance of PIP elastomers.
RESUMEN
Tubular structures exist broadly in biological systems and exhibit important functions including mediating cellular communications. The construction of artificial analogues in living cells would provide a new strategy for chemotherapy. In this report, a kind of supramolecular channel has been constructed within intercellular gaps by mimicking the assembly process and structure of natural gap junctional channels, which consist of hydrophobic tubular modules located in the adjacent cell membranes and hydrophilic modules within the extracellular space. The assembly of the channels was driven by electrostatic interactions. The channels could inhibit tumor cell invasion by preventing cell migration.
Asunto(s)
Movimiento Celular , Humanos , Movimiento Celular/efectos de los fármacos , Uniones Comunicantes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos/metabolismo , Canales Iónicos/química , Línea Celular TumoralRESUMEN
A six-cyclic crown ether-type pillar[5]arene was synthesized, and the five ethylene oxide loops were located outside the cavity and not affected by temperature changes which was confirmed by variable-temperature NMR experiment in DMSO-d6 and CDCl3 and 2D 1H-1H NOESY experiment in CDCl3. The six-cyclic pillar[5]-crown also showed greater binding ability of host-guest with bis(pyridinium) derivatives than conventional alkoxy pillar[5]arenes that illustrated through 1H NMR titration spectroscopic experiment in acetone-d6/CDCl3 (1 : 1) and UV-vis titration experiments in CHCl3 at room temperature. The five benzocrown ethers at the periphery were able to bind metal cations by 1H NMR titration spectroscopic experiment in CD2Cl2/methanol-d4(9 : 1).
RESUMEN
Natural gap junctions are a type of channel protein responsible for intercellular signalling and mass communication. However, the scope of applications for these proteins is limited as they cannot be prepared at a large scale and are unable to spontaneously insert into cell membranes in vitro. The construction of artificial gap junctions may provide an alternative strategy for preparing analogues of the natural proteins and bottom-up building blocks necessary for the synthesis of artificial cells. Here we show the construction of artificial gap junction channels from unimolecular tubular molecules consisting of alternately arranged positively and negatively charged pillar[5]arene motifs. These molecules feature a hydrophobic-hydrophilic-hydrophobic triblock structure that allows them to efficiently insert into two adjacent plasma membranes and stretch across the gap between the two membranes to form gap junctions. Similar to natural gap junction channels, the synthetic channels could mediate intercellular signal coupling and reactive oxygen species transmission, leading to cellular activity.
Asunto(s)
Uniones Comunicantes , Uniones Comunicantes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Calixarenos/química , Humanos , Compuestos de Amonio Cuaternario/química , Especies Reactivas de Oxígeno/metabolismo , Comunicación Celular , Membrana Celular/metabolismo , Transducción de SeñalRESUMEN
In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D 1H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se â â â N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se â â â N interactions beyond the crystalline state.
RESUMEN
Here, we present a versatile modular strategy for crafting novel covalent organic cages (para-cage[n]arenes and meta-cage[n]arenes, n = 3,4) and bimacrocycles (meta-bimacrocyclic-arenes) with stable backbones and modifiable rims. These structures can be synthesized from commercially available aromatic multialdehydes in a three-step process: quantitative bromination, Suzuki-Miyaura reaction (yielding over 60%), and a rapid one-pot Friedel-Crafts reaction with paraformaldehyde. Notably, the cage[n]arenes exhibit a well-defined prismatic shape, and the bimacrocyclic-arenes display both dimeric and monomeric configurations.
RESUMEN
Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWHs) are widely applied for surgical procedures and extracorporeal therapies, which, however, suffer bleeding risk. Protamine, the only clinically approved antidote, can completely neutralize UFH, but only partially neutralizes LMWHs, and also has a number of safety drawbacks. Here, we show that caltrop-like multicationic small molecules can completely neutralize both UFH and LMWHs. In vitro and ex vivo assays with plasma and whole blood and in vivo assays with mice and rats support that the lead compound is not only superior to protamine by displaying higher neutralization activity and broader therapeutic windows but also biocompatible. The effective neutralization dose and the maximum tolerated dose of the lead compound are determined to be 0.4 and 25 mg/kg in mice, respectively, suggesting good promise for further preclinical studies.
Asunto(s)
Heparina de Bajo-Peso-Molecular , Heparina , Ratas , Ratones , Animales , Heparina/uso terapéutico , Heparina de Bajo-Peso-Molecular/farmacología , Heparina de Bajo-Peso-Molecular/uso terapéutico , Antídotos/farmacología , Antídotos/uso terapéutico , Protaminas/farmacología , Bioensayo , Anticoagulantes/farmacología , Anticoagulantes/uso terapéuticoRESUMEN
Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685â µmol h-1 g-1 over 24â h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23â times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700â µmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24â h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.
RESUMEN
Long-acting neuromuscular blocks followed by rapid reversal may provide prolonged surgeries with improved conditions by omitting repetitive or continuous administration of the neuromuscular blocking agent (NMBA), eliminating residual neuromuscular block and minimizing postoperative recovery, which, however, is not clinically available. Here, we demonstrate that imidazolium-based macrocycles (IMCs) and acyclic cucurbit[n]urils (ACBs) can form such partners by functioning as long-acting NMBAs and rapid reversal agents through a pseudo[2]catenation mechanism based on stable complexation with Ka values of over 109 M-1. In vivo experiments with rats reveal that, at the dose of 2- and 3-fold ED90, one IMC attains a duration of action corresponding to 158 or 442 min for human adults, covering most of prolonged surgeries. The block can be reversed by one ACB with recovery time significantly shorter than that achieved by sugammadex for reversing the block of rocuronium, the clinically most widely used intermediate-acting NMBA.
Asunto(s)
Catenanos , Bloqueo Neuromuscular , gamma-Ciclodextrinas , Adulto , Humanos , Animales , Ratas , Sugammadex/farmacología , RocuronioRESUMEN
Structural conjugation greatly affects the optical and electronic properties of the COF photocatalyst. Herein, we show that 2D hydrazone COFs with either π-extended biphenyl (BPh-COF) or acetylene (AC-COF) frameworks demonstrated distinct charge transfer and photocatalytic performances. The two COFs show good crystallinity and decent porosity as their frameworks are enforced by intra/interlayers hydrogen bonding. However, computational and experimental data reveal that AC-COF managed broader visible-light absorption and narrower optical bandgaps and performed efficient photoinduced charge separation and transfer in comparison with BPh-COF, meaning that the ethynyl skeleton with enhanced planarity better improves the π-conjugation of the whole structure. As a result, AC-COF exhibited an ideal bandgap for rapid oxidative coupling of amines under visible-light irradiation. Furthermore, taking advantage of its better charge transfer properties, AC-COF demonstrated considerable enhanced product conversion and notable functional tolerance for metallaphotocatalytic C-O cross-coupling of a wide range of both aryl bromides and chlorides with alcohols. More importantly, besides being recoverable, AC-COF showcased the previously inaccessible etherification of dihaloarene. This report shows a facile approach for manipulating the structure-activity relationship and paves the way for the development of a COF photocatalyst for solar-to-chemical energy conversion.
RESUMEN
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Asunto(s)
Materiales Biocompatibles , Polímeros , Enlace de Hidrógeno , Polímeros/químicaRESUMEN
In this paper, two types of solid phase 2D and 3D XBOFs were selectively constructed from identical building blocks of tetraphenylmethane tetrapyridine derivative and 1,4-diiodotetrafluorobenzene by changing the crystallization solvent. This 3D XBOF is a novel hybrid supramolecular organic framework with the synergistic control of hydrogen and halogen bonds.
RESUMEN
New acyclic cucurbit[n]urils (ACBs) with eight carboxylate groups were synthesized. These hosts are highly soluble in water, and can form stable inclusion complexes with cationic bitter compounds. ACBs are confirmed to be non-toxic and biocompatible. Two-bottle preference (TBP) tests on mice show that all ACBs are tasteless to mammals. ACBs are discovered to mask the bitterness of berberine and denatonium benzoate, but not quinine hydrochloride, due to different binding modes.
RESUMEN
Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.
Asunto(s)
Fotoquimioterapia , Animales , Humanos , Mesoporfirinas , Células HeLaRESUMEN
[1n]Paracyclophane has been known for nearly 40 years, but its derivatives and properties are understudied in comparison to those of other macrocyclic compounds. By the modification of pillar[5]arene, we successfully obtained five electron-rich pentagonal macrocycles (pseudo[n]-pillar[5]arenes, n = 1-4) with the decrease of substituted phenylenes one after another, achieving the partial derivatization of [15]paracyclophane skeleton at its phenylene sites. Pseudo[n]-pillar[5]arenes (P[n]P[5]s) served as a kind of macrocyclic host to form complexes with various guests, such as dinitriles, dihaloalkanes, and imidazolium salt, in a 1:1 host-guest stoichiometric ratio. The binding constants with the guest gradually reduce along the decrease of substituted phenylene segments from host P[1]P[5] to P[4]P[5]. It is worthy to note that P[n]P[5]s can adjust their conformations to the "pillar-like" shape effectively when binding with succinonitrile in the solid state.
Asunto(s)
Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Conformación MolecularRESUMEN
Amination of aryl chlorides by metallaphotocatalysis is highly desired but remains practically challenging. Meanwhile, relying on soluble noble-metal photocatalysts suffers from resource scarcity and structural instability which limit their practical application. Here in, a highly crystalline acetylene-based hydrazone-linked covalent organic framewok-1 (AC-COF-1) is reported that enables metallaphotocatalytic amination of aryl chlorides. The non-planar effect of hydrazone linkage and weak interlayer attraction of acetylene bond are minimized by intralayer hydrogen-bonding. As a result, the COF shows not only improved crystallinity and porosity, but also enhanced optical and electronic properties compared to a COF analog without hydrogen-bonding. Notably, dual AC-COF-1/Ni system affords CN coupling products from broad aryl chloride substrates in excellent yields (up to 99%) and good functional tolerance. Furthermore, AC-COF-1 is recoverable and reusable for seven times photocatalysis cycles. This report demonstrates simple approach to tune the structure-activity relationship in COFs at molecular level.
RESUMEN
A new design concept for pH-sensing supramolecular fluorescent probes is reported. Supramolecular fluorescent pH probes based on pro-guest are designed and prepared. Pro-guests are designed to degrade under acidic condition and convert to competitive guests to displace encapsulated dyes, which leads to a significant enhancement in fluorescence intensity. A library of potential fluorescent pH probes is generated and screened to discover workable probes. These probes are capable of detecting the acidic pH in solution phase. We confirm that these supramolecular probes could detect the acidic environment in endosomal compartments in live cells.
Asunto(s)
Ácidos , Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Células HeLaRESUMEN
In the past two decades, photodynamic therapy (PDT) has become an effective method for the treatment of cancer. However, the posttreatment residue of photodynamic agents (PDAs) causes long-term skin phototoxicity. Here, we apply naphthalene-derived, box-like tetracationic cyclophanes, named NpBoxes, to bind to clinically used porphyrin-based PDAs to alleviate their posttreatment phototoxicity by reducing their free content in skin tissues and 1O2 quantum yield. We show that one of the cyclophanes, 2,6-NpBox, could include the PDAs to efficiently suppress their photosensitivity for the generation of reactive oxygen species. A tumour-bearing mouse model study revealed that, when Photofrin, the most widely used PDA in clinic, was administrated at a dose corresponding to the clinical one, 2,6-NpBox of the same dose could significantly suppress its posttreatment phototoxicity on the skin induced by simulated sunlight irradiation, without imposing a negative influence on its PDT efficacy.