Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 30(3): 605-617, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34628486

RESUMEN

Non-small cell lung cancer (NSCLC) has the highest mortality rate among all malignancies worldwide. The role of long noncoding RNAs (lncRNAs) in the progression of cancers is a contemporary research hotspot. Based on an integrative analysis of The Cancer Genome Atlas database, we identified lncRNA-RNA Component of Mitochondrial RNA Processing Endoribonuclease (RMRP) as one of the most highly upregulated lncRNAs that are associated with poor survival in NSCLC. Furthermore, N(6)-methyladenosine (m6A) was highly enriched within RMRP and enhanced its RNA stability. In vitro and in vivo experiments showed that RMRP promoted NSCLC cell proliferation, invasion, and migration. In terms of mechanism, RMRP recruited YBX1 to the TGFBR1 promotor region, leading to upregulation of the transcription of TGFBR1. The TGFBR1/SMAD2/SMAD3 pathway was also regulated by RMRP. In addition, RMRP promoted the cancer stem cells properties and epithelial mesenchymal transition, which promote the resistance to radiation therapy and cisplatin. Clinical data further confirmed a positive correlation between RMRP and TGFBR1. In short, our work reveals that m6A RNA methylation-mediated RMRP stability renders proliferation and progression of NSCLC through regulating TGFBR1/SMAD2/SMAD3 pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , MicroARNs/metabolismo , Metilación , Neoplasias Pulmonares/patología , ARN Largo no Codificante/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Estabilidad del ARN , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteína smad3/genética , Proteína Smad2/metabolismo
3.
Acta Pharmacol Sin ; 44(5): 999-1013, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36347996

RESUMEN

Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 µL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Factores de Diferenciación de Crecimiento , Cicatrización de Heridas , Animales , Humanos , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Quimiocina CXCL12/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Factores de Diferenciación de Crecimiento/uso terapéutico , Factores de Diferenciación de Crecimiento/metabolismo , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
4.
Mol Med Rep ; 26(4)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36004471

RESUMEN

Subsequently to the publication of this paper, the authors have realized that Fig. 2 was published containing some incorrectly assembled data panels. The E­cadherin control data panel in Fig. 3F was re­used in Fig. 2C; furthermore, the HG / Vimentin data panel in Fig. 4E was re­used in Fig. 2D. The authors have re­examined their original data, and were able to identify that Fig. 2 contained the erroneously assembled data panels. The revised version of Fig. 2, showing the correct E­cadherin control data panel for Fig. 2C and the correct HG / Vimentin data panel for Fig. 2D, is shown below. It was also noted that the white rectangles were not explained in the figure legend; these represent an enlargement of the cells in the E­cad/vimentin panels, and the details are now included in the figure legend (shown in bold). Note that these errors did not significantly affect either the results or the conclusions reported in this paper, and all the authors agree to the publication of this corrigendum. Furthermore, the authors thank the Editor of Molecular Medicine Reports for allowing them the opportunity to publish this corrigendum, and apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 19: 3190­3200, 2019; DOI: 10.3892/mmr.2019.9986].

5.
Cell Death Dis ; 11(10): 917, 2020 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-33100331

RESUMEN

NLRP3 (Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3) inflammasome-mediated cardiomyocytes pyroptosis plays a crucial part in progression of acute myocardial infarction (MI). GDF11 (Growth Differentiation Factor 11) has been reported to generate cytoprotective effects in phylogenesis and multiple diseases, but the mechanism that GDF11 contributes to cardioprotection of MI and cardiomyocytes pyroptosis remains poorly understood. In our study, we first determined that GDF11 was abnormally downregulated in the heart tissue of MI mice and hypoxic cardiomyocytes. Moreover, AAV9-GDF11 markedly alleviated heart function in MI mice. Meanwhile, GDF11 overexpression also decreased the pyroptosis of hypoxic cardiomyocytes. PROMO and JASPAR prediction software found that transcription factor HOXA3 was predicted as an important regulator of NLRP3, and was confirmed by ChIP assay. Further analysis identifying GDF11 promoted the Smad2/3 pathway resulted in HOXA3 overexpression. Taken together, our study implies that GDF11 prevents cardiomyocytes pyroptosis via HOXA3/NLRP3 signaling pathway in MI mice.


Asunto(s)
Proteínas Morfogenéticas Óseas/uso terapéutico , Cardiotónicos/uso terapéutico , Factores de Diferenciación de Crecimiento/uso terapéutico , Proteínas de Homeodominio/metabolismo , Infarto del Miocardio/genética , Animales , Proteínas Morfogenéticas Óseas/farmacología , Cardiotónicos/farmacología , Modelos Animales de Enfermedad , Factores de Diferenciación de Crecimiento/farmacología , Humanos , Masculino , Ratones , Piroptosis , Transfección , Regulación hacia Arriba
6.
Eur J Pharmacol ; 885: 173495, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32861661

RESUMEN

GDF11 has been reported to play a critical role in rejuvenating hypertrophy heart, skeletal muscle, and blood vessel regeneration in aged mice. Whether GDF11 can regulate autophagy in cardiomyocytes remains largely unknown. Thus, the purpose of the present study was to investigate the effects of GDF11 on cardiomyocyte autophagy induced by hypoxia, in addition to the underlying mechanisms. By using the MTT assay, Flow cytometry assay, LIVE/DEAD® Viability/Cytotoxicity Kit Stains and TUNEL assay, we found that exogenous GDF11 decreased apoptosis caused by prolonged hypoxia in cardiomyocytes. The expression of GDF11 was decreased obviously both in the cardiac tissue of myocardial infarction mice and the hypoxia treated cardiomyocytes. Protein levels of cleaved caspase-3, p-AMPK, SQSTM1, LC3B-I/II and GDF11 were detected by western blot. Autophagosomes and autolysosomes were identified by confocal laser microscopy after transfecting with the mRFP-eGFP-LC3 plasmids. Antibody against GDF11 (anti-GDF11) was used to inhibit the function of GDF11. At the molecular level, exogenous GDF11 increased AMPK function and enhanced autophagy activity. Anti-GDF11 inhibited autophagy and aggravated hypoxia-induced apoptosis in cardiomyocytes. Thus, GDF11 might be a potential target for myocardial infarction therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas Morfogenéticas Óseas/genética , Hipoxia de la Célula/efectos de los fármacos , Factores de Diferenciación de Crecimiento/genética , Miocitos Cardíacos/efectos de los fármacos , Animales , Anticuerpos Bloqueadores/farmacología , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/efectos de los fármacos , Electrocardiografía/efectos de los fármacos , Factores de Diferenciación de Crecimiento/antagonistas & inhibidores , Factores de Diferenciación de Crecimiento/efectos de los fármacos , Lisosomas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fagosomas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
Theranostics ; 10(12): 5276-5289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373212

RESUMEN

Rationale: Nicotine exposure via cigarette smoking is strongly associated with atherosclerosis. However, the underlying mechanisms remain poorly understood. The current study aimed to identify whether endothelial to mesenchymal transition (EndMT) contributes to nicotine-induced atherosclerosis. Methods: ApoE-/- mice were administered nicotine in their drinking water for 12 weeks. The effects of nicotine on EndMT were determined by immunostaining on aortic root and RNA analysis in aortic intima. In vitro nicotine-treated cell model was established on human aortic endothelial cells (HAECs). The effects of nicotine on the expression of EndMT-related markers, ERK1/2 and Snail were quantified by real-time PCR, western blot and immunofluorescent staining. Results: Nicotine treatment resulted in larger atherosclerotic plaques in ApoE-/- mice. The vascular endothelial cells from nicotine-treated mice showed mesenchymal phenotype, indicating EndMT. Moreover, nicotine-induced EndMT process was accompanied by cytoskeleton reorganization and impaired barrier function. The α7 nicotine acetylcholine receptor (α7nAChR) was highly expressed in HAECs and its antagonist could effectively relieve nicotine-induced EndMT and atherosclerotic lesions in mice. Further experiments revealed that ERK1/2 signaling was activated by nicotine, which led to the upregulation of Snail. Blocking ERK1/2 with inhibitor or silencing Snail by small interfering RNA efficiently preserved endothelial phenotype upon nicotine stimulation. Conclusion: Our study provides evidence that EndMT contributes to the pro-atherosclerotic property of nicotine. Nicotine induces EndMT through α7nAChR-ERK1/2-Snail signaling in endothelial cells. EndMT may be a therapeutic target for smoking-related endothelial dysfunction and cardiovascular disease.


Asunto(s)
Aterosclerosis/inducido químicamente , Transición Epitelial-Mesenquimal/fisiología , Nicotina/toxicidad , Placa Aterosclerótica/inducido químicamente , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Western Blotting , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Ratones , Placa Aterosclerótica/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
J Pharm Pharmacol ; 72(1): 76-83, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31702064

RESUMEN

OBJECTIVES: Metoprolol is regarded as a first-line medicine for the treatment of myocardial infarction (MI). However, the underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of miR-1 in the pharmacological function of metoprolol. METHODS: In vivo MI model was established by left anterior descending coronary artery (LAD) ligation. The effects of metoprolol on infarct size and cardiac dysfunction were determined by triphenyltetrazolium chloride staining and cardiac echocardiography, respectively. In vitro oxidative stress cardiomyocyte model was established by H2 O2 treatment. The effect of metoprolol on the expression of miR-1 and connexin43 (Cx43) was quantified by real-time PCR and western blot, respectively. The intercellular communication was evaluated by lucifer yellow dye diffusion. KEY FINDINGS: Left anterior descending ligation-induced MI injury was markedly attenuated by metoprolol as shown by reduced infarct size and better cardiac function. Metoprolol reversed the up-regulation of miR-1 and down-regulation of Cx43 in MI heart. Moreover, in H2 O2 -stimulated cardiomyocytes, overexpression of miR-1 abolished the effects of metoprolol on Cx43 up-regulation and increased intercellular communication, indicating that miR-1 may be a necessary mediator for the cardiac protective function of metoprolol. CONCLUSIONS: Metoprolol relieves MI injury via suppression miR-1, thus increasing its target protein Cx43 and improving intercellular communication.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Metoprolol/farmacología , MicroARNs/metabolismo , Infarto del Miocardio/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Animales , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Masculino , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Wistar , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
9.
Int J Cardiol ; 295: 7-13, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31399301

RESUMEN

BACKGROUND: Vascular aging has profound effects on cardiovascular diseases. Endothelial to mesenchymal transition (EndMT) is defined as the acquisition of mesenchymal characteristics by endothelial cells (ECs) and has been found induced in a model of ECs aging. However, whether EndMT occurs during aging in vivo, the functional significance of EndMT on vascular biology and the underlying mechanisms remain unknown. METHODS AND RESULTS: In this study, we examined the vascular ECs from young (2 months old) and old (18 months old) mice, and demonstrated that aged ECs underwent EndMT. Moreover, the transwell assay showed that EndMT process was accompanied by increased endothelial permeability. It was found that sirtuin 6 (SIRT6), a nicotinamide adenine dinucleotide+ (NAD+)-dependent histone deacetylase, was down-regulated during ECs aging. Knockdown of SIRT6 in young ECs could induce EndMT. Next, we identified five long non-coding RNAs that are enriched in ECs for downstream effector of SIRT6; only metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was significantly up-regulated in aged ECs. Knockdown of SIRT6 could increase MALAT1 levels. Furthermore, the ChIP assay and luciferase reporter gene assay confirmed that SIRT6 bound directly to the promoter region of MALAT1 and suppressed MALAT1 expression. Finally, we demonstrated that MALAT1 mediated aging-induced EndMT through increasing Snail expression. CONCLUSION: Our study provides in vivo evidence that ECs undergo EndMT during vascular aging, which increases endothelial permeability. SIRT6-mediated transcriptional suppression of MALAT1 is a key mechanism for EndMT. Manipulating EndMT may be considered as a new therapeutic strategy for retarding aging-associated vascular diseases.


Asunto(s)
Envejecimiento/fisiología , Endotelio Vascular/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Sirtuinas/genética , Enfermedades Vasculares/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Largo no Codificante/metabolismo , Transducción de Señal , Sirtuinas/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
10.
Acta Pharm Sin B ; 9(4): 724-733, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31384533

RESUMEN

Excess activation of cardiac fibroblasts inevitably induces cardiac fibrosis. Emodin has been used as a natural medicine against several chronic diseases. The objective of this study is to determine the effects of emodin on cardiac fibrosis and the underlying molecular mechanisms. Intragastric administration of emodin markedly decreased left ventricular wall thickness in a mouse model of pathological cardiac hypertrophy with excess fibrosis induced by transaortic constriction (TAC) and suppressed activation of cardiac fibroblasts induced by angiotensin II (AngII). Emodin upregulated expression of metastasis associated protein 3 (MTA3) and restored the MTA3 expression in the setting of cardiac fibrosis. Moreover, overexpression of MTA3 promoted cardiac fibrosis; in contrast, silence of MTA3 abrogated the inhibitory effect of emodin on fibroblast activation. Our findings unraveled the potential of emodin to alleviate cardiac fibrosis via upregulating MTA3 and highlight the regulatory role of MTA3 in the development of cardiac fibrosis.

11.
Phytomedicine ; 59: 152758, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31004884

RESUMEN

BACKGROUND: Emerging evidence has indicated the therapeutic potential of emodin with its multiple pharmacological effects. PURPOSE: To evaluate role of emodin in regulating insulin resistance (IR) and to elucidate the underlying molecular mechanisms. STUDY DESIGN/METHODS: Fasting blood glucose (FBG) and lipid levels were measured before and after intragastric administration of emodin in type 2 diabetes mellitus (T2DM) rats. Glucose consumption was determined in L6 cells to investigate the effect of emodin on glucose metabolism. Expression of miR-20b and SMAD7 was quantified by real-time PCR for mRNAs or western blot analysis for proteins. RESULTS: Emodin ameliorated hyperglycemia and dyslipidemia in T2DM rats, and glucose metabolism in a concentration- and time-dependent manner. MiR-20b was markedly upregulated in the setting of IR and overexpression of miR-20b disrupted glucose metabolism by repressing SMAD7 in L6 cells. Knockdown of this miRNA produced the opposite effects. Emodin abolished the abnormal upregulation of miR-20b and indirectly upregulated SMAD7. CONCLUSION: Emodin improves glucose metabolism to produce anti-IR effects, and downregulation of miR-20b thereby upregulation of SMAD7 is an underlying mechanism for the beneficial effects of emodin.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Emodina/farmacología , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Músculo Esquelético/efectos de los fármacos , ARN Mensajero , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Regulación hacia Abajo/efectos de los fármacos , Emodina/uso terapéutico , Transportador de Glucosa de Tipo 4/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/prevención & control , Masculino , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Ratas , Proteína smad7/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
Mol Med Rep ; 19(4): 3190-3200, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30816482

RESUMEN

Hepatic fibrosis is characterized by the aberrant production and deposition of extracellular matrix (ECM) proteins. Growing evidence indicates that the epithelial­mesenchymal transition serves a crucial role in the progression of liver fibrogenesis. Although a subset of microRNAs (miRNAs or miRs) has recently been identified as essential regulators of the EMT gene expression, studies of the EMT in hyperglycemic­induced liver fibrosis are limited. In the current study, it was observed that high glucose­treated AML12 cells occurred EMT process, and miR­32 expression was markedly increased in the liver tissue of streptozotocin­induced diabetic rats and in high glucose­treated AML12 cells. Additionally, the contribution of the EMT to liver fibrosis by targeting metastasis­associated gene 3 (MTA3) under hyperglycemic conditions was suppressed by AMO­32. The results indicated that miR­32 and MTA3 may be considered as novel drug targets in the prevention and treatment of liver fibrosis under hyperglycemic conditions. These finding improves the understanding of the progression of liver fibrogenesis.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Glucosa/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , MicroARNs/genética , Proteínas de Neoplasias/genética , Animales , Biomarcadores , Células Cultivadas , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Glucosa/efectos adversos , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Cirrosis Hepática/patología , Masculino , Interferencia de ARN , Ratas
13.
Mol Med Rep ; 19(5): 3527-3536, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30896796

RESUMEN

Myocardial infarction (MI) is the most common event in cardiovascular disease. Carvedilol, a ß­blocker with multiple pleiotropic actions, is widely used for the treatment cardiovascular diseases. However, the underlying mechanisms of carvedilol on alleviating MI are not fully understood. The aim of the present study was to investigate whether the beneficial effects of carvedilol were associated with regulation of microRNA­1 (miR­1). It was demonstrated that carvedilol ameliorated impaired cardiac function and decreased infarct size in a rat model of MI induced by coronary artery occlusion. Similarly, carvedilol reversed the H2O2­induced decrease in cardiomyocyte viability in a dose­dependent manner. The in vivo and in vitro models demonstrated the downregulation of miR­1 following treatment with carvedilol. Overexpression of miR­1, a known pro­apoptotic miRNA, decreased cell viability and induced cell apoptosis. Transfection of miR­1 abolished the beneficial effects of carvedilol. The expression of heat shock protein 60 (HSP60), a direct target of miR­1, was identified to be decreased in MI and H2O2­induced apoptosis, which was associated with a decrease in Bcl­2 and an increase in Bax; expression was restored following treatment with carvedilol. It was concluded that carvedilol partially exhibited its beneficial effects by downregulating miR­1 and increasing HSP60 expression. miR­1 has become a member of the group of carvedilol­responsive miRNAs. Future studies are required to fully elucidate the potential overlapping or compensatory effects of known carvedilol­responsive miRNAs and their underlying mechanisms of action in the pathophysiology of cardiovascular diseases.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/genética , Carvedilol/farmacología , Chaperonina 60/genética , MicroARNs/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Interferencia de ARN , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citoprotección/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Proteína X Asociada a bcl-2/metabolismo
14.
Nat Commun ; 9(1): 4176, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30301979

RESUMEN

Long non-coding RNAs (lncRNAs) have emerged as a new class of gene expression regulators playing key roles in many biological and pathophysiological processes. Here, we identify cardiac conduction regulatory RNA (CCRR) as an antiarrhythmic lncRNA. CCRR is downregulated in a mouse model of heart failure (HF) and in patients with HF, and this downregulation slows cardiac conduction and enhances arrhythmogenicity. Moreover, CCRR silencing induces arrhythmias in healthy mice. CCRR overexpression eliminates these detrimental alterations. HF or CCRR knockdown causes destruction of intercalated discs and gap junctions to slow longitudinal cardiac conduction. CCRR overexpression improves cardiac conduction by blocking endocytic trafficking of connexin43 (Cx43) to prevent its degradation via binding to Cx43-interacting protein CIP85, whereas CCRR silence does the opposite. We identified the functional domain of CCRR, which can reproduce the functional roles and pertinent molecular events of full-length CCRR. Our study suggests CCRR replacement a potential therapeutic approach for pathological arrhythmias.


Asunto(s)
Acoplamiento Excitación-Contracción/genética , Espacio Extracelular/metabolismo , Sistema de Conducción Cardíaco/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Arritmias Cardíacas/genética , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Insuficiencia Cardíaca/genética , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Miocardio/metabolismo , Miocardio/patología , Miocardio/ultraestructura , ARN Largo no Codificante/genética , Transducción de Señal , Fracciones Subcelulares/metabolismo , Proteínas de Unión al GTP rab/metabolismo
15.
Eur J Pharmacol ; 838: 170-176, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30170066

RESUMEN

Elimination of glucose transporter 4 (GLUT4) inevitably induces insulin resistance (IR), aggravating inflammation- and oxidative stress-related disorders. However, the underlying molecular mechanisms remain incompletely understood. In this study, we identified miR-17 as an important regulator of IR by targeting GLUT4. MiR-17 expression was found significantly elevated in skeletal tissues of rats with type 2 diabetes mellitus (T2DM), along with marked downregulation of GLUT4 protein level. Luciferase reporter gene assay demonstrated a direct interaction between miR-17 and the 3'untranslated region of GLUT4 mRNA. Correlation analyses (Spearman, Pearson, and Kendall) revealed that miR-17 level was negatively correlated with GLUT4 expression. Additionally, loss- and gain-of-function analyses showed that overexpression of miR-17 impaired glucose metabolism in L6 rat skeletal muscle cell line. In contrast, knockdown of endogenous miR-17 ameliorated glucose metabolism, accompanied by elevation of GLUT4 protein level. These findings unraveled a novel mechanism for IR that involves repression of GLUT4 by miR-17 and suggested miR-17 as a potential molecular target for the development of new therapeutic approaches for the treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Transportador de Glucosa de Tipo 4/genética , Glucosa/metabolismo , Resistencia a la Insulina/genética , MicroARNs/metabolismo , Animales , Glucemia , Metabolismo de los Hidratos de Carbono/genética , Línea Celular , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Transportador de Glucosa de Tipo 4/sangre , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Masculino , MicroARNs/genética , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
16.
Cell Death Dis ; 9(2): 171, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29416034

RESUMEN

Cigarette smoking is a major risk factor for atherosclerosis and other cardiovascular diseases. Increasing evidence has demonstrated that nicotine impairs the cardiovascular system by targeting vascular endothelial cells, but the underlying mechanisms remain obscure. It is known that cell death and inflammation are crucial processes leading to atherosclerosis. We proposed that pyroptosis may be implicated in nicotine-induced atherosclerosis and therefore conducted the present study. We found that nicotine resulted in larger atherosclerotic plaques and secretion of inflammatory cytokines in ApoE-/- mice fed with a high-fat diet (HFD). Treatment of human aortic endothelial cells (HAECs) with nicotine resulted in NLRP3-ASC inflammasome activation and pyroptosis, as evidenced by cleavage of caspase-1, production of downstream interleukin (IL)-1ß and IL-18, and elevation of LDH activity and increase of propidium iodide (PI) positive cells, which were all inhibited by caspase-1 inhibitor. Moreover, silencing NLRP3 or ASC by small interfering RNA efficiently suppressed nicotine-induced caspase-1 cleavage, IL-18 and IL-1ß production, and pyroptosis in HAECs. Further experiments revealed that the nicotine-NLRP3-ASC-pyroptosis pathway was activated by reactive oxygen species (ROS), since ROS scavenger (N-acetyl-cysteine, NAC) prevented endothelial cell pyroptosis. We conclude that pyroptosis is likely a cellular mechanism for the pro-atherosclerotic property of nicotine and stimulation of ROS to activate NLRP3 inflammasome is a signaling mechanism for nicotine-induced pyroptosis.


Asunto(s)
Aterosclerosis/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nicotina/toxicidad , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Inhibidores de Caspasas/farmacología , Células Endoteliales/efectos de los fármacos , Humanos , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Ratones , Modelos Biológicos
17.
J Pineal Res ; 64(2)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29024030

RESUMEN

Atherosclerosis (AS) is an inflammatory disease linked to endothelial dysfunction. Melatonin is reported to possess substantial anti-inflammatory properties, which has proven to be effective in AS. Emerging literature suggests that pyroptosis plays a critical role during AS progression. However, whether pyroptosis contributes to endothelial dysfunction and the underlying molecular mechanisms remained unexploited. This study was designed to investigate the antipyroptotic effects of melatonin in atherosclerotic endothelium and to elucidate the potential mechanisms. In this study, high-fat diet (HFD)-treated ApoE-/- mice were used as an atherosclerotic animal model. We found intragastric administration of melatonin for 12 weeks markedly reduced the atherosclerotic plaque in aorta. Meanwhile, melatonin also attenuated the expression of pyroptosis-related genes, including NLRP3, ASC, cleaved caspase1, NF-κB/GSDMD, GSDMD N-termini, IL-1ß, and IL-18 in aortic endothelium of melatonin-treated animals. Consistent antipyroptotic effects were also observed in ox-LDL-treated human aortic endothelial cells (HAECs). We found that lncRNA MEG3 enhanced pyroptosis in HAECs. Moreover, MEG3 acted as an endogenous sponge by sequence complementarity to suppress the function of miR-223 and to increase NLRP3 expression and enhance endothelial cell pyroptosis. Furthermore, knockdown of miR-223 blocked the antipyroptotic actions of melatonin in ox-LDL-treated HAECs. Together, our results suggest that melatonin prevents endothelial cell pyroptosis via MEG3/miR-223/NLRP3 axis in atherosclerosis, and therefore, melatonin replacement might be considered a new strategy for protecting endothelium against pyroptosis, thereby for the treatment of atherosclerosis associated with pyroptosis.


Asunto(s)
Antiinflamatorios/farmacología , Células Endoteliales/efectos de los fármacos , Melatonina/farmacología , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Aterosclerosis/patología , Dieta Alta en Grasa/efectos adversos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , Proteína con Dominio Pirina 3 de la Familia NLR/biosíntesis , ARN Largo no Codificante/biosíntesis
18.
Sci Rep ; 6: 33787, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27671604

RESUMEN

Emerging evidence has suggested the critical role of endothelial to mesenchymal transition (EndMT) in fibrotic diseases. The present study was designed to examine whether EndMT is involved in arsenic trioxide (As2O3)-induced cardiac fibrosis and to explore the underlying mechanisms. Cardiac dysfunction was observed in rats after exposure to As2O3 for 15 days using echocardiography, and the deposition of collagen was detected by Masson's trichrome staining and electron microscope. EndMT was indicated by the loss of endothelial cell markers (VE-cadherin and CD31) and the acquisition of mesenchymal cell markers (α-SMA and FSP1) determined by RT-PCR at the mRNA level and Western blot and immunofluorescence analysis at the protein level. In the in-vitro experiments, endothelial cells acquired a spindle-shaped morphology accompanying downregulation of the endothelial cell markers and upregulation of the mesenchymal cell markers when exposed to As2O3. As2O3 activated the AKT/GSK-3ß/Snail signaling pathway, and blocking this pathway with PI3K inhibitor (LY294002) abolished EndMT in As2O3-treated endothelial cells. Our results highlight that As2O3 is an EndMT-promoting factor during cardiac fibrosis, suggesting that targeting EndMT is beneficial for preventing As2O3-induced cardiac toxicity.

19.
Toxicol Lett ; 250-251: 1-9, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27025157

RESUMEN

Bisphenol A (BPA) is a widely studied typical endocrine-disrupting chemical. The present study aimed to verify whether BPA could induce proliferation of cardiac fibroblasts and collagen production leading to cardiac interstitial fibrosis. After exposure to BPA for 30 consecutive days, decreased cardiac function was observed in rats using echocardiography, and the deposition of collagen was detected by Masson's trichrome staining and electron microscope. BPA remarkably stimulated proliferation and migration of cultured cardiac fibroblasts and collagen production in a concentration-dependent manner, as revealed by MTT, wound healing assay and collagen assay. Meanwhile, BPA treatment also enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In contrast, pretreatment with estrogen receptor inhibitor ICI182780 or ERK inhibitor PD98059 prevented the enhanced phosphorylation of ERK1/2, and subsequently inhibited the up-regulation of transforming growth factor-ß1 (TGF-ß1) expression induced by BPA. As a consequence, these inhibitors also decreased proliferation and collagen production, as well as the fibrosis-related genes expression. Taken together, our results indicated that BPA may act as a promoting factor in proliferative process and collagen production of cardiac fibroblasts via activating ERK1/2.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Cardiomiopatías/inducido químicamente , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Fibroblastos/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/enzimología , Fenoles/toxicidad , Transducción de Señal/efectos de los fármacos , Animales , Cardiomiopatías/enzimología , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Antagonistas de Estrógenos/farmacología , Fibroblastos/enzimología , Fibroblastos/ultraestructura , Fibrosis , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Miocardio/ultraestructura , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Factores de Tiempo , Factor de Crecimiento Transformador beta1/metabolismo
20.
Sci Rep ; 6: 19346, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26783084

RESUMEN

Non-small cell lung cancer (NSCLC), one of the most common causes of cancer-related death, is a worldwide public health problem. MicroRNAs (miRNAs) have recently been identified as a novel class of regulators of carcinogenesis and tumor progression, including miRNAs associated with NSCLC. This study aimed to explore the role of miR-522 in NSCLC and the mechanisms underlying this role. We report here that miR-522 expression was significantly increased in both human NSCLC tissues and cell lines. Furthermore, an MTT assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay kit and flow cytometry confirmed that the inhibition of miR-522 suppressed NSCLC cells proliferation and induced apoptosis. Compared with miR-522 overexpression, miR-522 inhibitor markedly reduced cells migration and invasion, as indicated by wound-healing and transwell assays. In addition, a luciferase assay identified DENN/MADD domain containing 2D (DENND2D) as a direct target of miR-522. qRT-PCR and western blot analyses indicated the reciprocal expression of miR-522 and DENND2D in NSCLC tissue samples. DENND2D was involved in miR-522 induced proliferation and metastasis of NSCLC cells by a miRNA-masking antisense oligonucleotides (miR-mask) technology. These data highlight a novel molecular interaction between miR-522 and DENND2D, which indicates that targeting miR-522 may constitute a potential therapy for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Interferencia de ARN , Proteínas Supresoras de Tumor/genética , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...